464 13 Stability of Elastic SystemsUnknown parametersC 1 ;C 2 ,andfmay be determined using the following bound-
ary conditions:.1/ y .0/D 0 I .2/ y^0 .0/DI .3/ y .l /Df1.The first boundary condition leads to equation
C 1 Cf
k 1 l
N 1
D0:2.At pointA.xDyD0/the reactive moment equalsMADf.k 1 lP/, thus the
angle of rotation atAis
'DMA
k 2Df
k 2.k 1 lP/;so the second boundary condition leads to the following equationC 2 nf
k 1
PCk 1 lP
k 2
D0:3.The third boundary condition leads to the following equation
C 1 cosnlCC 2 sinnlD0:Conditions 1–3 may be rewritten in the form of the homogeneous algebraic equa-
tions with respect to unknownsC 1 ;C 2 ,andf. Equation for critical load is presented
as determinant from coefficients at these unknowns, i.e.,DDˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ
10k 1 l
P 10n
k 1
PCk 1 lP
k 2cosnl sinnl 0ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇD0orDDˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ
10k 1 l
P 10n
k 1
PCk 1 lP
k 21 tannl 0ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇD 0This equation may be rewritten as the transcendental equation with respect to pa-
rameterntannlDnlk 1 l
n^2 EI 1k 1 l
n^2 EIC
k 1 ln^2 EI
l
k 2:For given parametersl;EI;k 1 andk 2 of the structure, solution of this equation
leads to parameternof critical load. The critical load isPcrDn^2 EI.Table13.1