492 13 Stability of Elastic Systems
13.6.1 Double Integration Method..................................
Figure13.22shows a simply supported beam subjected to lateral forceFand com-
pressed forceP. We need to derive the expressions for deflection and internal forces.
Fig. 13.22 Simply supported
beam subjected to
compressive axial loadPand
lateral loadF
P Plcxyx
RA RBABCF
yDifferential equation of elastic curve of the beam for left and right parts (portions
1 and 2, respectively) may be written as
EId^2 y 1
dx^2DPy 1 RAxDPyFc
lx; xlc;EId^2 y 2
dx^2DPy 2 RB.lx/DPyF.lc/
l.lx/ ; x > lc:
(13.30)
General solution of these equations is
y 1 DC 1 cosnxCD 1 sinnxFc
Plx: (13.31)y 2 DC 2 cosnxCD 2 sinnxF
Pl.lc/ .lx/ ; (13.32)where
nDr
P
EIis parameter of compressed loadP.
At the pointsA.x D0/andB.xDl/the displacementyis zero. Equations
(13.31)and(13.32) lead toC 1 D 0 andC 2 DD 2 tannl. Therefore, expressions
for displacements within the left and right portions are
y 1 DD 1 sinnxFc
Plx;y 2 DD 2 tannlcosnxCD 2 sinnx
F
Pl.lc/ .lx/ : (13.33)For calculation of unknown coefficientsD 1 andD 2 we can use the following
conditions at the pointC:
y 1 Dy 2 anddy 1
dxDdy 2
dx: