Advanced Methods of Structural Analysis

(Jacob Rumans) #1

13.6 Compressed Rods with Lateral Loading 495


Differential equation of elastic curve is

EI

d^2 y
dx^2

DM.x/;

where the bending moment at any sectionxis


M.x/DP.yy 0 /CM 0 CQ 0 x

X
Fi.xai/

qx^2
2

:

Differential equation becomes


d^2 y
dx^2

Cn^2 yD

1
EI


M 0 CQ 0 xPy 0 

X
Fi.xai/

qx^2
2

;nD

r
P
EI

:
(13.36)
Solution of this equation is


yDC 1 cosnxCC 2 sinnxC

Cy 0 

1
n^2 EI


M 0 CQ 0 x


C

1
n^3 EI

P
FiŒn .xai/sinn.xai/



q
n^4 EI


1 

n^2 x^2
2



























cosnx
(13.36a)
The first and second terms of this expression are solution of homogeneous equa-
tion (13.36), while other terms are partial solution of nonhomogeneous equation.
For calculation of unknownsC 1 andC 2 , we can use the following boundary con-
ditions: atxD 0 initial displacement and slope areyDy 0 andy^0 D 0 .These
conditions lead to

C 1 D
M 0
n^2 EI

andC 2 D
1
n

 0 C

Q 0
n^2 EI

!
:

Substitution of these constants into expression foryand differentiation with
respect toxleads to the following formulas for displacement, angle of rotation,
bending moment and shear:


y.x/Dy 0 C 0 

sinnx
n



M 0
EI



1 cosnx
n^2



Q 0
EI



nxsinnx
n^3

CyI

.x/D

dy
dx

D 0 cosnx

M 0
EI



sinnx
n



Q 0
EI



1 cosnx
n^2

C:

M.x/DEI

d^2 y
dx^2

D 0 EInsinnxCM 0 cosnxCQ 0 

sinnx
n

CMI

Q.x/D

dM
dx

D 0 EIn^2 cosnxM 0 nsinnxCQ 0 cosnxCQ: (13.37)
Free download pdf