13.6 Compressed Rods with Lateral Loading 495
Differential equation of elastic curve is
EI
d^2 y
dx^2
DM.x/;
where the bending moment at any sectionxis
M.x/DP.yy 0 /CM 0 CQ 0 x
X
Fi.xai/
qx^2
2
:
Differential equation becomes
d^2 y
dx^2
Cn^2 yD
1
EI
M 0 CQ 0 xPy 0
X
Fi.xai/
qx^2
2
;nD
r
P
EI
:
(13.36)
Solution of this equation is
yDC 1 cosnxCC 2 sinnxC
Cy 0
1
n^2 EI
M 0 CQ 0 x
C
1
n^3 EI
P
FiŒn .xai/sinn.xai/
q
n^4 EI
1
n^2 x^2
2
cosnx |
---|
(13.36a) |
The first and second terms of this expression are solution of homogeneous equa- |
tion (13.36), while other terms are partial solution of nonhomogeneous equation. |
For calculation of unknownsC 1 andC 2 , we can use the following boundary con- |
ditions: atxD 0 initial displacement and slope areyDy 0 andy^0 D 0 .These |
conditions lead to |
C 1 D
M 0
n^2 EI
andC 2 D
1
n
0 C
Q 0
n^2 EI
!
:
Substitution of these constants into expression foryand differentiation with
respect toxleads to the following formulas for displacement, angle of rotation,
bending moment and shear:
y.x/Dy 0 C 0
sinnx
n
M 0
EI
1 cosnx
n^2
Q 0
EI
nxsinnx
n^3
CyI
.x/D
dy
dx
D 0 cosnx
M 0
EI
sinnx
n
Q 0
EI
1 cosnx
n^2
C:
M.x/DEI
d^2 y
dx^2
D 0 EInsinnxCM 0 cosnxCQ 0
sinnx
n
CMI
Q.x/D
dM
dx
D 0 EIn^2 cosnxM 0 nsinnxCQ 0 cosnxCQ: (13.37)