13.6 Compressed Rods with Lateral Loading 495
Differential equation of elastic curve isEId^2 y
dx^2DM.x/;where the bending moment at any sectionxis
M.x/DP.yy 0 /CM 0 CQ 0 xX
Fi.xai/qx^2
2:Differential equation becomes
d^2 y
dx^2Cn^2 yD1
EI
M 0 CQ 0 xPy 0 X
Fi.xai/qx^2
2;nDr
P
EI:
(13.36)
Solution of this equation is
yDC 1 cosnxCC 2 sinnxCCy 0 1
n^2 EI
M 0 CQ 0 x
C1
n^3 EIP
FiŒn .xai/sinn.xai/q
n^4 EI
1 n^2 x^2
2| cosnx |
|---|
| (13.36a) |
| The first and second terms of this expression are solution of homogeneous equa- |
| tion (13.36), while other terms are partial solution of nonhomogeneous equation. |
| For calculation of unknownsC 1 andC 2 , we can use the following boundary con- |
| ditions: atxD 0 initial displacement and slope areyDy 0 andy^0 D 0 .These |
| conditions lead to |
C 1 D
M 0
n^2 EIandC 2 D
1
n 0 CQ 0
n^2 EI!
:Substitution of these constants into expression foryand differentiation with
respect toxleads to the following formulas for displacement, angle of rotation,
bending moment and shear:
y.x/Dy 0 C 0 sinnx
nM 0
EI1 cosnx
n^2Q 0
EInxsinnx
n^3CyI.x/Ddy
dxD 0 cosnxM 0
EIsinnx
nQ 0
EI1 cosnx
n^2C:M.x/DEId^2 y
dx^2D 0 EInsinnxCM 0 cosnxCQ 0 sinnx
nCMIQ.x/DdM
dxD 0 EIn^2 cosnxM 0 nsinnxCQ 0 cosnxCQ: (13.37)