13.6 Compressed Rods with Lateral Loading 497SinceQ 0 D0; M 0 D 0 ,then(13.37) becomey.x/Dy 0 C 0 sinnx
nCF
n^3 EI.nxsinnx/I.x/D 0 cosnxCF
n^2 EI.1cosnx/ :(13.39)These equations contain two unknown parameters. They are 0 andy 0. Boundary
conditions are:1.AtxDl(supportB) the slope of elastic curveD 0 ,so
.l/D 0 cosnlCF
n^2 EI.1cosnl/D0;which leads immediately to the slope at the free end 0 DF
n^2 EI1 cosnl
cosnlDFl^2
2 EI2.1cos/
^2 cos;DnlDlr
P
EI: (13.40)2.AtxDlthe vertical displacementyD 0 ,so
y.l/Dy 0 C 0 sinnl
nCF
n^3 EI.nlsinnl/D0:Taking into account (13.40), the vertical displacement at the free end becomesy 0 DFl^2
^2 EI1 cos
cossin
nF
n^3 EI.sin/DFl^3
^3 EI
1 cos
cossin.sin/
DFl^3
3 EI3.tan/
^3DFl^3
3 EI'y:
(13.41)
If a beam is subjected to lateral forceFonly, then a transversal displacement at
the free end equalsFl^3 =3EI. However, if additional axial forcePacts then the
factor
'yD3.tan/
^3
must be included.
3.The moment at clamped support equals
M.l/D 0 EInsinnlCMDFl^2
^2 EI1 cos
cosEInsin
F
nsinDFltan
DFl'M:(13.42)