Advanced Methods of Structural Analysis

(Jacob Rumans) #1
13.6 Compressed Rods with Lateral Loading 497

SinceQ 0 D0; M 0 D 0 ,then(13.37) become

y.x/Dy 0 C 0 

sinnx
n

C

F
n^3 EI

.nxsinnx/I

.x/D 0 cosnxC

F
n^2 EI

.1cosnx/ :

(13.39)

These equations contain two unknown parameters. They are 0 andy 0. Boundary
conditions are:

1.AtxDl(supportB) the slope of elastic curveD 0 ,so


.l/D 0 cosnlC

F
n^2 EI

.1cosnl/D0;

which leads immediately to the slope at the free end

 0 D

F
n^2 EI

1 cosnl
cosnl

D

Fl^2
2 EI

2.1cos/
^2 cos

;DnlDl

r
P
EI

: (13.40)

2.AtxDlthe vertical displacementyD 0 ,so


y.l/Dy 0 C 0 

sinnl
n

C

F
n^3 EI

.nlsinnl/D0:

Taking into account (13.40), the vertical displacement at the free end becomes

y 0 D

Fl^2
^2 EI

1 cos
cos



sin
n



F
n^3 EI

.sin/

D

Fl^3
^3 EI


1 cos
cos

sin.sin/
D

Fl^3
3 EI

3.tan/
^3

D

Fl^3
3 EI

'y:
(13.41)
If a beam is subjected to lateral forceFonly, then a transversal displacement at
the free end equalsFl^3 =3EI. However, if additional axial forcePacts then the
factor
'yD

3.tan/
^3
must be included.
3.The moment at clamped support equals


M.l/D 0 EInsinnlCMD

Fl^2
^2 EI

1 cos
cos

EInsin
F
n

sinDFl

tan


DFl'M:

(13.42)
Free download pdf