Advanced Methods of Structural Analysis

(Jacob Rumans) #1

508 13 Stability of Elastic Systems


l 2

P
k
l 1

EI

Fig. P13.10


Ans. sinnl 1 sinnl 2 Dnlsinnl


l 1 l 2
l^2



P
kl


;nD

r
P
EI
For problems 13.11 through 13.15, it is recommended to apply the Displacement
method. All stability functions 1 ; 2 ; :::are presented in Table A25.


13.11.Design diagram of the continuous beam is presented in Fig. P13.11. Derive
the equation for critical load in term of parameter ̨. Consider a special case for
̨D0:5.


EI P

l 1 =aL l 2 =(1−a)L
L

Fig. P13.11


Ans.

4
̨

' 2. ̨ 0 /C

3
1  ̨

' 1 ..1 ̨/  0 /D0;  1 Dl 1

r
P
EI

D ̨L

r
P
EI

D ̨ 0 ;

 2 D.1 ̨/ L


r
P
EI

D 0 .1 ̨/

13.12.Two-span beam of spansl 1 andl 2 Dˇl 1 is subjected to axial forcesPand
̨P(Fig. P13.12). The flexural rigidity for the left and right spans areEIandkEI.
Derive the equation for critical load in term of parameters ̨; ˇandk. Consider the
special cases: a) ̨D3; ˇD 1 ,kD 4 Iand b) ̨D0; kD1; ˇD 1. Explain
obtained results.


P
EI
l 1 l 2 =bl 1

aP
kEI

Fig. P13.12


Ans.' 1 . 1 /C

k
ˇ

' 1 . 2 / D 0 , 1 D l 1

r
P
EI

; 2 D l 2

r
PC ̨P
kEI

D

 1 ˇ


r
1 C ̨
k
Free download pdf