508 13 Stability of Elastic Systems
l 2
P
k
l 1
EI
Fig. P13.10
Ans. sinnl 1 sinnl 2 Dnlsinnl
l 1 l 2
l^2
P
kl
;nD
r
P
EI
For problems 13.11 through 13.15, it is recommended to apply the Displacement
method. All stability functions 1 ; 2 ; :::are presented in Table A25.
13.11.Design diagram of the continuous beam is presented in Fig. P13.11. Derive
the equation for critical load in term of parameter ̨. Consider a special case for
̨D0:5.
EI P
l 1 =aL l 2 =(1−a)L
L
Fig. P13.11
Ans.
4
̨
' 2. ̨ 0 /C
3
1 ̨
' 1 ..1 ̨/ 0 /D0; 1 Dl 1
r
P
EI
D ̨L
r
P
EI
D ̨ 0 ;
2 D.1 ̨/ L
r
P
EI
D 0 .1 ̨/
13.12.Two-span beam of spansl 1 andl 2 Dˇl 1 is subjected to axial forcesPand
̨P(Fig. P13.12). The flexural rigidity for the left and right spans areEIandkEI.
Derive the equation for critical load in term of parameters ̨; ˇandk. Consider the
special cases: a) ̨D3; ˇD 1 ,kD 4 Iand b) ̨D0; kD1; ˇD 1. Explain
obtained results.
P
EI
l 1 l 2 =bl 1
aP
kEI
Fig. P13.12
Ans.' 1 . 1 /C
k
ˇ
' 1 . 2 / D 0 , 1 D l 1
r
P
EI
; 2 D l 2
r
PC ̨P
kEI
D
1 ˇ
r
1 C ̨
k