524 14 Dynamics of Elastic Systems
Let
D
1
ı 0 m!^2
D
6 EI
m!^2 l^3
:
In this case equation (a) may be rewritten
.13/ A 1 C12A 2 D0;
12A 1 C.16/ A 2 D0:
(b)
Frequency equation becomes
DD
13 12
12 16
D.13/ .16/ 144 D0:
Roots indescending orderare 1 D26:593I 2 D2:4066
Eigenfrequenciesin increasing orderare
! 1 D
s
6 EI
1 ml^3
D0:4750
r
EI
ml^3
;! 2 D
s
6 EI
2 ml^3
D1:5789
r
EI
ml^3
:
Mode shape vibration may be determined on the basis of equations (b).
For first mode. 1 D26:593/ratio of amplitudes are
A 2
A 1
D
13
12
D
13 26:593
12
D1:1328;
A 2
A 1
D
12
16
D
12
16 26:593
D1:1328:
Assume thatA 1 D 1 , so the first eigenvector®becomes
'D
' 11 ' 21
̆T
D
1 1:1328
̆T
For second mode. 2 D2:4066/ratio of amplitudes are
A 2
A 1
D
13
12
D
13 2:4066
12
D0:8828
A 2
A 1
D
12
16
D
12
16 2:4066
D0:8828
The modal matrixˆis then defined as
ˆD
11
1:1328 0:8828
:
Corresponding mode shapes of vibration are shown in Fig.14.8b.