526 14 Dynamics of Elastic Systems
Frequency equationDD
4:7320 1:2679
1:2679 6:1961D 0Roots of frequency equation and corresponding eigenfrequencies are 1 D6:9280!! 12 D1
1 mı 0D
4EA
6:9280mlD0:5774EA
ml; 2 D4:0002!!^22 D1
2 mı 0D0:9999EA
mlŠEA
ml:Mode shape vibration may be determined on the base equation (b).
For first mode. 1 D6:9280/ratio of amplitudes areA 2
A 13 Cp
3 1
p
3 3D4:73206:9280
1:2679D1:73Dp
3;A 2
A 1p
3 3
1 C 3p
3 1D1:2679
6:19616:9280Dp
3:Assume thatA 1 D 1 , so the first eigenvector®becomes'D
' 11 ' 21̆T
D
1 p
3̆TFor second mode. 2 D4:0002/ratio of amplitudes are
A 2
A 1D4:73204:0002
1:2679D0:577D1
p
3;A 2
A 1D1:2679
6:19614:0002D0:577D1
p
3:The modal matrixˆis then defined asˆD
11
p
31=p
3
:Corresponding mode shapes of vibration are shown in Fig.14.9b.Example 14.3.The beam in Fig.14.10a carries three equal concentrated masses
mi. The length of the beam islD4a, and flexural stiffness beamEI. The mass of
the beam is neglected. It is necessary to find eigenvalues and mode shape vibrations.
Solution.The beam has three degrees of freedom. The bending moment diagrams
caused by unit inertial forces are shown in Fig.14.10b.