Advanced Methods of Structural Analysis

(Jacob Rumans) #1
14.2 Free Vibrations of Systems with Finite Number Degrees of Freedom: Force Method 529

Frequencies of the free vibration in increasing order

!^21 D

1
 1 mı 0

D
768
31:5563

EI
ml^3

D24:337
EI
ml^3

!! 1 D4:9333

r
EI
ml^3

;

!^22 D

1
 2 mı 0

D

768
2:0

EI
ml^3

D 384

EI
ml^3

!! 2 D19:5959

r
EI
ml^3

;

!^23 D

1
 3 mı 0

D

768
0:44365

EI
ml^3

D1731:09

EI
ml^3

!! 3 D41:6064

r
EI
ml^3

:

(d)

For each i-th eigenvalue, the set of equation (b) for calculation of amplitudes is

.9i/A 1 C11A 2 C7A 3 D0;
11A 1 C.16i/A 2 C11A 3 D0;
7A 1 C11A 2 C.9i/A 3 D0:

(e)

Equations (e) divide byA 1 .Let 2 DA 2 =A 1 ; 3 DA 3 =A 1.
Equations for modes become

.9i/C112iC73iD0;
11 C.16i/2iC113iD0;
7 C112iC.9i/3iD0:

(f)

AssumingA 1 D 1 we can calculate 2 and 3 for each calculated eigenvalue.
For their calculation we can consider set ofanytwo equations.

1.Eigenvalue 1 D31:5563


.931:5563/C11 2 C7 3 D0;
11 C.1631:5563/  2 C11 3 D0:

Solution of these equations is 2 D 1:4142;  3 D 1:0. Therefore, the first
(principal) mode is defined asy11;y 21 D

p
2 y 11 ;y 31 Dy 11. If we assume that
y 11 D 1 , then the eigenvector® 1 which corresponds to the frequency! 1 is
® 1 D
1:0

p
21

̆T
.
Corresponding mode shape vibration is shown in Fig.14.10c.

 1 D31:5563

! 1 D4:9333

s
EI
ml^3

Note, that substitution of 2 and 3 into third equation (f) leads to the identity.
2.Eigenvalue 2 D2:0. In this case


.92:0/C11 2 C7 3 D0;
11 C.162:0/  2 C11 3 D0:
Free download pdf