536 14 Dynamics of Elastic Systems
abm
1 =m,
EI=•
EI
EI
EI
h
h
h
1
2
3
m 2 =2m,
EI=•
m 3 =2m,
EI=•
1
2
3
M 1
r 31
r 21
r 11
Z 1 =1
6 ih
6 ih
6 ih
1
2
3
r 31
r 21
12 ih^2 r^11
6 ih^12 ih^2
c
Fig. 14.13 (a) Design diagram of the frame; (b) Primary system; (c) Bending moment diagram
caused by unit displacement of the constraint 1 and calculation of unit reactionsr 11 ;r 21 ,andr 31
Similarly, considering the secondand third unit displacements, we get
r 12 D (^24) hi 2 ;r 22 D (^48) hi 2 ;r 32 D (^24) hi 2 ;
r 13 D0; r 23 D (^24) hi 2 ;r 33 D (^48) hi 2
Letr 0 D (^24) hi 2. Equations (14.9) becomes
r 0 m!^2
A 1 r 0 A 2 C0:A 3 D0;
r 0 A 1 C 2
r 0 m!^2
A 2 r 0 A 3 D0;
0:A 1 r 0 A 2 C 2
r 0 m!^2
A 3 D0:
(a)
The frequency equation is
DD
2
4
r 0 m!^2 r 0 0
r 0 2r 0 2m!^2 r 0
0 r 0 2r 0 2m!^2
3
(^5) D 0