14.4 Free Vibrations of One-Span Beams with Uniformly Distributed Mass 539
Table 14.2Comparison of the force and displacement methods for free vibration analysisForce method (analysis in terms of displacements)Displacement method (analysis in terms ofreactions)Coupled differentialequations- Canonical form
ı^11my 1C 1ı^12my 2C 2:::Cı1nmn
ynCy^1D0:::::::::::::ın1my 1C 1ın2m
2
y^2C:::Cınnmn
ynCynD0my 1C 1r^11y^1Cr^12y^2C:::Cr1nynD0::::::::::::mn
ynCrn1y^1Crn2y^2C:::CrnnynD0- Matrix form
FMYCYD0MYCSYD0Type of couplingDynamicalStaticMatricesFlexibility matrixFD2 664ı^11ı^12::: ı1nı^21ı^22::: ı2n::: ::: ::: :::ın1ın2::: ınn3 775;YD2 66666y^1 y^2 :::yn3 77777Mis diagonal mass matrixStiffness matrixSD2 664r^11r^12::: r1nr^21r^22::: r2n::: ::: ::: :::rn1rn2::: rnn3 775;YD2 66666y^1 y^2 :::yn3 77777Mis diagonal mass matrixSolutionYDAsin.!tC'^0/YDAsin.!tC'^0/Equations for unknownsamplitudesA
i- Canonical form
mı 1
11ı 1
! 2
A
1
Cmı 2
12AC 2:::Cmın
1nA
n
D0mı 1
21
AC 1mı 2
22ı 1
! 2
AC 2:::Cmın
2nA
n
D0:::::::::::::mı 1
n1
AC 1mı 2
n2A
2
C:::Cmın
nnı 1
! 2
A
n
D0r11m! 1 2
AC 1r^12AC 2:::Cr1nA
n
D0r^21A
1
Cr22m! 2 2
AC 2:::Cr2nA
n
D0::::::::::rn1A
1
Crn2A
2
C:::Cr
nnm!n 2
An
D0- Matrix form
FM(^12)!
(^) I
A
D
0
ŒS
!
2 M
A
D
0
Frequency equation1. Canonical form
2 664
m
ı 1
11
ı 1
!
2
m
ı 2
12
:::
m
ın
1n
m
ı 1
21
m
ı 2
22
ı 1
!
2
:::
m
ın
2n
:::
:::
:::
:::
m
ı 1
n1
m
ı 2
n2
::: m
ın
nn
ı 1
!
(^37752)
D
0
2 664
r^11
m
! 1
2
r^12
:::
r1n
r^21
r^22
m
! 2
2
:::
r2n
:::
:::
:::
:::
rn1
rn2
::: r
nn
m
!n
(^37752)
D
0
- Matrix form
FM(^12)!
ID
0
S
!
2 M
D
0