14.4 Free Vibrations of One-Span Beams with Uniformly Distributed Mass 539
Table 14.2
Comparison of the force and displacement methods for free vibration analysis
Force method (analysis in terms of displacements)
Displacement method (analysis in terms ofreactions)
Coupled differential
equations
- Canonical form
ı^11
m
y 1
C 1
ı^12
m
y 2
C 2
:::
C
ı1n
m
n
yn
C
y^1
D
0
:::::::::::::ın1
m
y 1
C 1
ın2
m
2
y^2
C
:::
C
ınn
m
n
yn
C
yn
D
0
m
y 1
C 1
r^11
y^1
C
r^12
y^2
C
:::
C
r1n
yn
D
0
::::::::::::m
n
yn
C
rn1
y^1
C
rn2
y^2
C
:::
C
rnn
yn
D
0
- Matrix form
FM
Y
C
Y
D
0
M
Y
C
SY
D
0
Type of coupling
Dynamical
Static
Matrices
Flexibility matrix
F
D
2 664
ı^11
ı^12
::: ı
1n
ı^21
ı^22
::: ı
2n
::: ::: ::: :::ın1
ın2
::: ı
nn
3 775
;
Y
D
2 66666
y^1 y^2 :::yn
3 77777
M
is diagonal mass matrix
Stiffness matrixS
D
2 664
r^11
r^12
::: r
1n
r^21
r^22
::: r
2n
::: ::: ::: :::rn1
rn2
::: r
nn
3 775
;
Y
D
2 66666
y^1 y^2 :::yn
3 77777
M
is diagonal mass matrix
Solution
Y
D
A
sin
.!t
C
'^0
/
Y
D
Asin
.!t
C
'^0
/
Equations for unknowns
amplitudes
A
i
- Canonical form
m
ı 1
11
ı 1
!
2
A
1
C
m
ı 2
12
A
C 2
:::
C
m
ın
1n
A
n
D
0
m
ı 1
21
A
C 1
m
ı 2
22
ı 1
!
2
A
C 2
:::
C
m
ın
2n
A
n
D
0
:::::::::::::m
ı 1
n1
A
C 1
m
ı 2
n2
A
2
C
:::
C
m
ın
nn
ı 1
!
2
A
n
D
0
r
11
m
! 1
2
A
C 1
r^12
A
C 2
:::
C
r1n
A
n
D
0
r^21
A
1
C
r
22
m
! 2
2
A
C 2
:::
C
r2n
A
n
D
0
::::::::::rn1
A
1
C
rn2
A
2
C
:::
C
r
nn
m
!n
2
A
n
D
0
- Matrix form
FM
(^12)!
(^) I
A
D
0
ŒS
!
2 M
A
D
0
Frequency equation1. Canonical form
2 664
m
ı 1
11
ı 1
!
2
m
ı 2
12
:::
m
ın
1n
m
ı 1
21
m
ı 2
22
ı 1
!
2
:::
m
ın
2n
:::
:::
:::
:::
m
ı 1
n1
m
ı 2
n2
::: m
ın
nn
ı 1
!
(^37752)
D
0
2 664
r^11
m
! 1
2
r^12
:::
r1n
r^21
r^22
m
! 2
2
:::
r2n
:::
:::
:::
:::
rn1
rn2
::: r
nn
m
!n
(^37752)
D
0
- Matrix form
FM
(^12)!
ID
0
S
!
2 M
D
0