Advanced Methods of Structural Analysis

(Jacob Rumans) #1

546 14 Dynamics of Elastic Systems


Fundamental data for one-span uniform beams with classical boundary condi-
tions are presented in Table A.26. This table contains the frequency equation, and
the first, second and third eigenvalues. For the nodal points of the mode shapes of a
free vibration, the origin is placed on the left end of the beam.


Problems.......................................................................


14.1.Statically determinate beam carried one lumped mass. Determine the fre-
quency of free vibration.


M
b

l a

c
M
l

2 EI
l

M EI
a
EI, l

a b

Fig. P14.1


Ans. (a)!D

r
3lEI
a^2 b^2 M

;(c)!D

r
2 EI
3l^3 M

.

14.2.Statically indeterminate beamcarried one lumped mass (Fig.P14.2). Deter-
mine the frequency of free vibration.


M

b a

EI M

l/ 2

EI

l/ 2

ab

Fig. P14.2


Ans. (a)!D

s
12 EI
a^2 .3bC4a/ M

;(b)!D

r
768 EI
7l^3 M

.

14.3.Symmetrical frame with absolutely rigid cross bar of total massMis shown
in Fig.P14.3. Find the frequency of free horizontal vibration.


EI=∞, M

h EI

Fig. P14.3


Ans.!D

r
24 EI
h^3 M
Free download pdf