546 14 Dynamics of Elastic Systems
Fundamental data for one-span uniform beams with classical boundary condi-
tions are presented in Table A.26. This table contains the frequency equation, and
the first, second and third eigenvalues. For the nodal points of the mode shapes of a
free vibration, the origin is placed on the left end of the beam.
Problems.......................................................................
14.1.Statically determinate beam carried one lumped mass. Determine the fre-
quency of free vibration.
M
b
l a
c
M
l
2 EI
l
M EI
a
EI, l
a b
Fig. P14.1
Ans. (a)!D
r
3lEI
a^2 b^2 M
;(c)!D
r
2 EI
3l^3 M
.
14.2.Statically indeterminate beamcarried one lumped mass (Fig.P14.2). Deter-
mine the frequency of free vibration.
M
b a
EI M
l/ 2
EI
l/ 2
ab
Fig. P14.2
Ans. (a)!D
s
12 EI
a^2 .3bC4a/ M
;(b)!D
r
768 EI
7l^3 M
.
14.3.Symmetrical frame with absolutely rigid cross bar of total massMis shown
in Fig.P14.3. Find the frequency of free horizontal vibration.
EI=∞, M
h EI
Fig. P14.3
Ans.!D
r
24 EI
h^3 M