Appendix 583
Ta b l e A. 2 4 Special functions for stability analysis
Functions Form 1 Form 2 Maclaurin series
' 1 . /
^2 tan
3.tan/
1
3
^2 sin
sincos
1
2
15
4
525
C
' 2 . /
.tan/
8 tan
tan
2
2
1
4
sin^2 cos
2 2 cossin
1
2
30
11
4
25200
C
' 3 . /
.sin/
4 sin
tan
2
2
1
2
.sin/
2 2 cossin
1 C
2
60 C
13^4
25200 C
' 4 . / ' 1
2
1
6
^2 sin
2 sincos
1
2
60
4
84000
C
1 . /
^3
3.tan/
1
3
^3 cos
sincos
1 2
2
5
4
525
C
2 . / (^1)
2
1
12
^3 .1Ccos/
2 sincos
1
^2
10
^4
8400
C
sin
sin
sin
1 C
^2
6
C
7^4
360
C
tan
tan
cos
sin
1
^2
3
^4
45
C
tan tan
sin
cos
0 C^2 C
^4
3
C
Numerical values of these functions in terms of dimensionless parameterare presented in
Ta b l eA.25
Ta b l e A. 2 5 Special functions for stability analysis by Displacement method
' 1 . / ' 2 . / ' 3 . / ' 4 . /
1 . /
2 . /
0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 0.9973 0.9980 1.0009 0.9992 0.9840 0.9959
0.4 0.9895 0.9945 1.0026 0.9973 0.9362 0.9840
0.6 0.9756 0.9881 1.0061 0.9941 0.8557 0.9641
0.8 0.9566 0.9787 1.0111 0.9895 0.7432 0.9362
1.0 0.9313 0.9662 1.0172 0.9832 0.5980 0.8999
1.1 0.9164 0.9590 1.0209 0.9798 0.5131 0.8789
1.2 0.8998 0.9511 1.0251 0.9757 0.4198 0.8557
1.3 0.8814 0.9424 1.0298 0.9715 0.3181 0.8307
1.4 0.8613 0.9329 1.0348 0.9669 0.2080 0.8035
1.5 0.8393 0.9226 1.0403 0.9619 0.0893 0.7743
=2 0.8225 0.9149 1.0445 0.9620 0.0000 0.7525
1.6 0.8153 0.9116 1.0463 0.9566 0:0380 0.7432
1.7 0.7891 0.8998 1.0529 0.9509 0:1742 0.7100
1.8 0.7609 0.8871 1.0600 0.9448 0:3191 0.6747
1.9 0.7297 0.8735 1.0676 0.9382 0:4736 0.6374
2.0 0.6961 0.8590 1.0760 0.9313 0:6372 0.5980
2.1 0.6597 0.8437 1.0850 0.9240 0:8103 0.5565
2.2 0.6202 0.8273 1.0946 0.9164 0:9931 0.5131
(continued)