Advanced Methods of Structural Analysis

(Jacob Rumans) #1

Appendix 583


Ta b l e A. 2 4 Special functions for stability analysis
Functions Form 1 Form 2 Maclaurin series


' 1 . /
^2 tan
3.tan/


1
3

^2 sin
sincos
1 

2
15


4
525
C

' 2 . /
.tan/
8 tan



tan
2

2


1
4

sin^2 cos
2  2 cossin
1 

2
30
11

4
25200
C

' 3 . /
.sin/
4 sin



tan
2 


2


1
2

.sin/
2  2 cossin
1 C

2
60 C

13^4
25200 C

' 4 . / ' 1



2

 1
6

^2 sin
2 sincos
1 

2
60
 

4
84000
C

1 . /
^3
3.tan/


1
3

^3 cos
sincos
1 2

2
5


4
525
C

2 . / (^1)

2
 1
12
^3 .1Ccos/
2 sincos
1 
^2
10

^4
8400
C

sin

sin

sin
1 C
^2
6
C
7^4
360
C

tan

tan
cos
sin
1 
^2
3

^4
45
C
tan tan
sin
cos
0 C^2 C
^4
3
C
Numerical values of these functions in terms of dimensionless parameterare presented in
Ta b l eA.25
Ta b l e A. 2 5 Special functions for stability analysis by Displacement method
' 1 . / ' 2 . / ' 3 . / ' 4 . /
1 . /
2 . /
0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 0.9973 0.9980 1.0009 0.9992 0.9840 0.9959
0.4 0.9895 0.9945 1.0026 0.9973 0.9362 0.9840
0.6 0.9756 0.9881 1.0061 0.9941 0.8557 0.9641
0.8 0.9566 0.9787 1.0111 0.9895 0.7432 0.9362
1.0 0.9313 0.9662 1.0172 0.9832 0.5980 0.8999
1.1 0.9164 0.9590 1.0209 0.9798 0.5131 0.8789
1.2 0.8998 0.9511 1.0251 0.9757 0.4198 0.8557
1.3 0.8814 0.9424 1.0298 0.9715 0.3181 0.8307
1.4 0.8613 0.9329 1.0348 0.9669 0.2080 0.8035
1.5 0.8393 0.9226 1.0403 0.9619 0.0893 0.7743
 =2 0.8225 0.9149 1.0445 0.9620 0.0000 0.7525
1.6 0.8153 0.9116 1.0463 0.9566 0:0380 0.7432
1.7 0.7891 0.8998 1.0529 0.9509 0:1742 0.7100
1.8 0.7609 0.8871 1.0600 0.9448 0:3191 0.6747
1.9 0.7297 0.8735 1.0676 0.9382 0:4736 0.6374
2.0 0.6961 0.8590 1.0760 0.9313 0:6372 0.5980
2.1 0.6597 0.8437 1.0850 0.9240 0:8103 0.5565
2.2 0.6202 0.8273 1.0946 0.9164 0:9931 0.5131
(continued)

Free download pdf