Advanced Methods of Structural Analysis

(Jacob Rumans) #1

Appendix 585


Ta b l e A. 2 6 One span beams with classical boundary conditions. Frequency equation andeigen-
values


Type of beam Frequency equation n


Eigen
valuen

Nodal points Dx=l
of mode shapeX
1 Pinned–pinned sinknlD 0 1 3.14159265 0; 1.0
2 6.28318531 0; 0.5; 1.0
3 9.42477796 0; 0.333; 0.667; 1.0
2 Clamped–clampedcosknlcos hknlD 1 1 4.73004074 0; 1.0
2 7.85320462 0; 0.5; 1.0
3 10.9956079 0; 0.359; 0.641; 1.0
3 Pinned–clamped tanknltan hknlD 0 1 3.92660231 0; 1.0
2 7.06858275 0; 0.440; 1.0
3 10.21017612 0; 0.308; 0.616; 1.0
4 Clamped–free cosknlcos hknlD 1 1 1.87510407 0
2 4.69409113 0; 0.774
3 7.85475744 0; 0.5001; 0.868
5 Free–free cosknlcos hknlD 1 1 0 Rigid-body mode
2 4.73004074 0.224; 0.776
3 7.85320462 0.132; 0.500; 0.868
6 Pinned–free tanknltanhknlD 0 1 0 Rigid-body mode
2 3.92660231 0; 0.736
3 7.06858275 0; 0.446; 0.853

Free download pdf