Index
A
Ancillary diagram
displacement-load (Z-P), 372, 376–379
internal forces-deformation (S-e), 372,
377–378
joint-load (J-L), 372–376
Arches
askew, 97–100, 106
Boussinesq equation, 485
differential equation, 484, 486
geometry parameters, 79–80
hingeless, 237, 325, 331–339, 484, 489,
577
influence lines, 86–93
nil points, 94, 102
three-hinge, 77–107
two-hinged, 77, 237–239, 243, 267, 366,
484, 485, 488, 489
B
Beam-columns
deflection, 504
differential equation, 540–541
Beams
continuous, 432–441, 471–483, 508, 564,
574
with elastic supports, 560
free vibration equation, 520–521, 530–532
Gerber–Semikolenov, 39–42, 45, 46, 212
universal equation, 148, 150–152, 155, 194
Bendixen, 271
Bendixen Bernoulli-Euler beam, 538, 540, 543
Betti theorem, 189–191
Boundary condition,117, 150, 152, 154,
160, 194, 309, 360, 450, 461, 464,
470–472, 484, 489, 519, 540–542,
544, 545, 549, 585
Boussinesq equation, 485
Buckling, xxii, 450–452, 462, 463, 481, 484,
485, 488, 489, 506
C
Cable
arbitrary load, 122–125
catenary, 110, 125–128, 131, 133–137
differential equation, 119
direct problem, 114–117, 131
inverse problem, 110–111, 115–121, 123,
125
Castigliano theorem, 147, 181, 195
Cauchy–Clebschcondition, 149
Change of temperature, 40, 73, 145, 159,
165–170, 195, 228, 251–253, 257,
258, 293, 303, 369, 374, 379, 414
Chebushev formula, 11–13, 78
Clebsch, 271
Combined method, 302, 303, 305, 312
Comparison of methods, 291–294, 355–358,
538
Compressed force
conservative, 451
critical, 450–456
nonconservative, 451
Conjugate beam method, 181, 185, 189, 194,
195
Connecting line, 34, 46, 53, 54, 61, 67, 94, 96
Constraints
required, 6, 8
redundant, 6, 12, 211, 212, 214, 216,
218–220, 234, 244, 271, 439, 516
replacing, 6, 212, 218
Continuous beams
change of temperature, 228, 238, 251–269
foci method, 575–576
influence lines, 326–331
plastic analysis, 432–441
settlement ofsupports, 246–251
stability equation, 471–483
589