A–7–2. Consider the system defined byObtain the sinusoidal transfer functions and
In deriving and we assume that Simi-
larly, in obtaining and we assume that
Solution.The transfer matrix expression for the system defined byis given bywhereG(s)is the transfer matrix and is given byFor the system considered here, the transfer matrix becomesHenceAssuming that U 2 (jv)=0, we find and as follows:Similarly, assuming that U 1 (jv)=0, we find and as follows:Notice that Y 2 (jv)U 2 (jv)is a nonminimum-phase transfer function.Y 2 (jv)
U 2 (jv)=
jv- 25
(jv)^2 +4jv+ 25Y 1 (jv)
U 2 (jv)=
jv+ 5
(jv)^2 +4jv+ 25Y 1 (jv)U 2 (jv) Y 2 (jv)U 2 (jv)Y 2 (jv)
U 1 (jv)=
- 25
(jv)^2 +4jv+ 25Y 1 (jv)
U 1 (jv)=
jv+ 4
(jv)^2 +4jv+ 25Y 1 (jv)U 1 (jv) Y 2 (jv)U 1 (jv)B
Y 1 (s)
Y 2 (s)R= D
s+ 4
s^2 +4s+ 25- 25
s^2 +4s+ 25
s+ 5
s^2 +4s+ 25
s- 25
s^2 +4s+ 25TB
U 1 (s)
U 2 (s)R
= D
s+ 4
s^2 +4s+ 25- 25
s^2 +4s+ 25
s+ 5
s^2 +4s+ 25
s- 25
s^2 +4s+ 25T
=
1
s^2 +4s+ 25B
s+ 4- 25
1
sRB
1
0
1
1
R
C(s I-A)-^1 B+D= B
1
0
0
1
RB
s
25- 1
s+ 4R
- 1
B
1
0
1
1
R
G(s)=C(s I-A)-^1 B+DY(s)=G(s)U(s)y#=Cx+Dux#=Ax+BuY 1 (jv)U 2 (jv) Y 2 (jv)U 2 (jv), U 1 (jv)=0.Y 2 (jv)U 2 (jv). Y 1 (jv)U 1 (jv) Y 2 (jv)U 1 (jv), U 2 (jv)=0.Y 1 (jv)U 1 (jv),Y 2 (jv)U 1 (jv),Y 1 (jv)U 2 (jv),B
y 1
y 2R= B
1
0
0
1
RB
x 1
x 2R
B
x# 1
x# 2R= B
0
- 25
1
- 4
RB
x 1
x 2R+ B
1
0
1
1
RB
u 1
u 2R
522 Chapter 7 / Control Systems Analysis and Design by the Frequency-Response MethodOpenmirrors.com