Example Problems and Solutions 539Hence, we setfrom which we obtainSince the phase curve never crosses the –180° line, the gain margin is ±qdB. Noting that the
magnitude of G(jv)must be equal to 0 dB at v=2.3835, we havefrom which we getThis Kvalue will give the phase margin of 50°.A–7–17. For the standard second-order systemshow that the bandwidth vbis given byNote that vb/vnis a function only of z. Plot a curve of vb/vnversusz.Solution.The bandwidth vbis determined from @CAjvbB/RAjvbB@=–3dB. Quite often, instead of
–3dB, we use –3.01dB, which is equal to 0.707. Thus,Thenfrom which we getv^4 n=0.5CAv^2 n-v^2 bB^2 + 4 z^2 v^2 n v^2 bDv^2 n3 Av^2 n-v^2 bB^2 +A 2 zvn vbB^2=0.707
2
CAjvbB
RAjvbB(^2) = 2 v
(^2) n
AjvbB^2 + 2 zvnAjvbB+v^2 n
(^2) =0.707
vb=vnA 1 - 2 z^2 + 24 z^4 - 4 z^2 + 2 B^1 ^2
C(s)
R(s)
=
v^2 n
s^2 + 2 zvn s+v^2 nK=
2.3835^2
222 +2.3835^2
=1.8259
2
K(jv+2)
(jv)^22
v=2.3835= 1
vc=2.3835 radsectan-^1vc
2= 50 °
G(s)+– K(s+ 2) s^12Figure 7–133
Space-vehicle control
system.