Since the static velocity error constant Kvis specified as 4 sec–1, we have
Thus
Next, we plot a Bode diagram of
MATLAB Program 8–2 produces a Bode diagram of G(s). The resulting Bode diagram
is shown in Figure 8–14.
G(s)=
4
sAs^2 + 1 B
Gc(s)=
4 (as+ 1 )(bs+ 1 )
s
=K= 4
Kv=lim
sS 0sGc(s)
1
s^2 + 1
=lim
sS 0s
K(as+ 1 )(bs+ 1 )
s
1
s^2 + 1
578 Chapter 8 / PID Controllers and Modified PID ControllersFigure 8–13
Control system.Gc(s)^1
s^2 + 1+–MATLAB Program 8–2
num = [4];
den = [1 0.00000000001 1 0];
w = logspace(-1,1,200);
bode(num,den,w)
title('Bode Diagram of 4/[s(s^2+1)]')
Frequency (rad/sec)Bode Diagram of 4/[s(s^2 + 1)]− 300− 100− 50− 150
− 200
− 2500− 500Phase (deg); Magnitude (dB)5010 −^1100101Figure 8–14
Bode diagram of
4/CsAs^2 +1BD.Openmirrors.com