Example Problems and Solutions 51+–R 1 C 1
R 1C 1
1 – G 1 G 2 G 3 G 4G 1
G 1G 3 G 4 – G 2+–R 1 C 2G 3G 1 –G 2 G 4=
+–R 2 C 2
R 2C 2
1 – G 1 G 2 G 3 G 4G 4
G 4G 2 G 1 – G 3=
R 1C 2
1 – G 1 G 2 G 3 G 4
G 1 G 2 G 4
+–R 2 C 1G 2G 4 – G 3 G (^1) R
2
C 1
1 – G 1 G 2 G 3 G 4
G 1 G 3 G 4
(a)(b)(c)(d)Figure 2–25
Simplified block
diagrams and
corresponding
closed-loop transfer
functions.
A–2–6. Show that for the differential equation system(2–58)
state and output equations can be given, respectively, by(2–59)
and(2–60)
where state variables are defined byx 3 =y$-b 0 u$-b 1 u# -b 2 u=x# 2 - b 2 ux 2 =y# -b 0 u# -b 1 u=x# 1 - b 1 ux 1 =y-b 0 uy=[1 0 0]C
x 1
x 2
x 3S +b 0 u
C
x# 1
x# 2
x# 3S =C
0
0
- a 3
1
0
- a 2
0
1
- a 1
SC
x 1
x 2
x 3S + C
b 1
b 2
b 3Su
y%+a 1 y$+a 2 y# +a 3 y=b 0 u%+b 1 u$+b 2 u#+b 3 u