52 Chapter 2 / Mathematical Modeling of Control SystemsandSolution.From the definition of state variables x 2 andx 3 ,we have(2–61)(2–62)To derive the equation for we first note from Equation (2–58) thatSincewe haveHence, we get
(2–63)Combining Equations (2–61), (2–62), and (2–63) into a vector-matrix equation, we obtain Equa-
tion (2–59). Also, from the definition of state variable x 1 ,we get the output equation given by
Equation (2–60).A–2–7. Obtain a state-space equation and output equation for the system defined bySolution.From the given transfer function, the differential equation for the system isComparing this equation with the standard equation given by Equation (2–33), rewritteny%+a 1 y$+a 2 y#+a 3 y=b 0 u%+b 1 u$+b 2 u# +b 3 uy%+4y$+5y# +2y=2u%+u$+u#+2uY(s)
U(s)=
2s^3 +s^2 +s+ 2
s^3 +4s^2 +5s+ 2x3 =-a 3 x 1 - a 2 x 2 - a 1 x 3 +b 3 u=-a 1 x 3 - a 2 x 2 - a 3 x 1 +b 3 u=-a 1 x 3 - a 2 x 2 - a 3 x 1 +Ab 3 - a 1 b 2 - a 2 b 1 - a 3 b 0 Bu+Ab 2 - b 2 - a 1 b 1 - a 2 b 0 Bu+Ab 3 - a 1 b 2 - a 2 b 1 - a 3 b 0 Bu=-a 1 x 3 - a 2 x 2 - a 3 x 1 +Ab 0 - b 0 Bu%+Ab 1 - b 1 - a 1 b 0 Bu$+b 0 u%+b 1 u$+b 2 u# +b 3 u-b 0 u%-b 1 u$-b 2 u#- a 2 Ay# -b 0 u#-b 1 uB-a 2 b 0 u# -a 2 b 1 u-a 3 Ay-b 0 uB-a 3 b 0 u
=-a 1 Ay$-b 0 u$-b 1 u# -b 2 uB-a 1 b 0 u$-a 1 b 1 u#-a 1 b 2 u=A-a 1 y$
- a 2 y
- a 3 yB+b 0 u
%
+b 1 u$
+b 2 u+b 3 u-b 0 u%
- b 1 u
$
- b 2 u
x# 3 = y%-b 0 u%-b 1 u$-b 2 u#x 3 =y$-b 0 u$-b 1 u# -b 2 uy%=-a 1 y$-a 2 y# -a 3 y+b 0 u%+b 1 u$+b 2 u+b 3 ux# 3 ,x# 2 =x 3 +b 2 ux# 1 =x 2 +b 1 ub 3 =b 3 - a 1 b 2 - a 2 b 1 - a 3 b 0b 2 =b 2 - a 1 b 1 - a 2 b 0b 1 =b 1 - a 1 b 0b 0 =b 0Openmirrors.com