700 Chapter 9 / Control Systems Analysis in State Spacewherekis a vector whose components are the magnitudes of rstep functions applied at
t=0. The solution to the step input at t=0is given byIfAis nonsingular, then this last equation can be simplified to give(9–96)
(c)Ramp response:Let us write the ramp input u(t)aswherevis a vector whose components are magnitudes of ramp functions applied at t=0.The
solution to the ramp input tvgiven at t=0isIfAis nonsingular, then this last equation can be simplified to give(9–97)
A–9–7. Obtain the response y(t)of the following system:whereu(t)is the unit-step input occurring at t=0,oru(t)=1(t)
Solution.For this systemThe state transition matrix can be obtained as follows:(t)=eAt=l-^1 C(s I-A)-^1 D(t)=eAtA= B
- 1
1
- 0.5
0
R, B= B
0.5
0
R
y =[1 0]C
x 1x 2S
B
x# 1
x# 1R = B
- 1
1
- 0.5
0
RB
x 1
x 2R+ B
0.5
0
Ru, B
x 1 (0)
x 2 (0)R = B
0
0
R
=eAt x( 0 )+ CA-^2 AeAt-IB-A-^1 tD Bvx(t)=eAt x( 0 )+AA-^2 BAeAt-I-AtB Bv=eAt x( 0 )+eAtaI
2
t^2 -2 A
3!
t^3 +3 A^2
4!
t^4 -4 A^3
5!
t^5 +pb Bv=eAt x( 0 )+eAt
3t0e-Attdt Bvx(t)=eAt x( 0 )+
3t0eA(t-t) Bt vdtu(t)=t v=eAt x(0)+A-^1 AeAt-IB Bkx(t)=eAt x(0)+eAtC-AA-^1 BAe-At-IBD Bk=eAt x(0)+eAtaIt-At^2
2!+
A^2 t^3
3!- pb Bk
=eAt x(0)+eAtc
3t0aI-At+A^2 t^2
2!- pbdtd Bk
x(t)=eAt x(0)+
3t0eA(t-t) BkdtOpenmirrors.com