708 Chapter 9 / Control Systems Analysis in State SpaceSimilarly, ifthenA–9–12. Consider the following polynomial in lof degree m-1, where we assume l 1 ,l 2 ,p,lmto be
distinct:wherek=1,2,p,m. Notice thatThen the polynomial f(l)of degree m-1,takes on the values fAlkBat the points lk. This last equation is commonly called Lagrange’s
interpolation formula. The polynomial f(l)of degree m-1is determined from mindependent
data fAl 1 B, fAl 2 B, p, fAlmB. That is, the polynomial f(l) passes through mpoints
fAl 1 B,fAl 2 B,p,fAlmB. Since f(l)is a polynomial of degree m-1, it is uniquely determined.
Any other representations of the polynomial of degree m-1can be reduced to the Lagrange
polynomialf(l).= amk= 1fAlkBAl-l 1 BpAl-lk- 1 BAl-lk+ 1 BpAl-lmB
Alk-l 1 BpAlk-lk- 1 BAlk-lk+ 1 BpAlk-lmBf(l)= amk= 1fAlkBpk(l)pkAliB= b1,
0,
ifi=k
ifiZkpk(l)=Al-l 1 BpAl-lk- 1 BAl-lk+ 1 BpAl-lmB
Alk-l 1 BpAlk-lk- 1 BAlk-lk+ 1 BpAlk-lmBeJt= G
el^1 t
0
00
tel^1 t
el^1 t
01
2 t(^2) el 1 t
tel^1 t
el^1 t
el^4 t
0
tel^4 t
el^4 t
el^6 t
0
0
0
el^7 tW
J=G
l 1
0
00
1
l 1
00
1
l 1
l 4
01
l 4
l 60
l 7W
Openmirrors.com