712 Chapter 9 / Control Systems Analysis in State SpaceIn the present case we have(9–106)
By substituting l 1 ,l 4 ,p,lmforlin Equation (9–106), we obtain the following m-2equations:(9–107)
By differentiating Equation (9–106) with respect to l, we obtain(9–108)
whereSubstitution of l 1 forlin Equation (9–108) givesReferring to Equation (9–105), this last equation becomes(9–109)Similarly, differentiating Equation (9–106) twice with respect to land substituting l 1 forl,we
obtainThis last equation can be written as(9–110)Rewriting Equations (9–110), (9–109), and (9–107), we get(9–111)
a 0 +a 1 lm+a 2 l^2 m+p+am- 1 lmm-^1 =fAlmBa 0 +a 1 l 4 +a 2 l^24 +p+am- 1 lm 4 -^1 =fAl 4 Ba 0 +a 1 l 1 +a 2 l^21 +p+am- 1 lm 1 -^1 =fAl 1 Ba 1 + 2 a 2 l 1 +p+(m-1)am- 1 lm 1 -^2 =f¿Al 1 Ba 2 + 3 a 3 l 1 +p+(m-1)(m-2)
2am- 1 lm 1 -^3 =f–Al 1 B
2f–Al 1 B= 2 a 2 + 6 a 3 l 1 +p+(m-1)(m-2)am- 1 lm 1 -^3d^2
d^2 lf(l)^2
l=l 1=f–Al 1 B=d^2
dl^2a(l)^2
l=l 1f¿Al 1 B=a 1 + 2 a 2 l 1 +p+(m-1)am- 1 lm 1 -^2d
dlf(l)^2
l=l 1=f¿Al 1 B=d
dla(l)^2
l=l 1Al-l 1 B^2 h(l)=d
dlCg(l)Al-l 1 B^3 Al-l 4 BpAl-lmBDd
dlf(l)=Al-l 1 B^2 h(l)+d
dla(l)fAlmB=aAlmBfAl 4 B=aAl 4 BfAl 1 B=aAl 1 B=g(l)CAl-l 1 B^3 Al-l 4 BpAl-lmBD+a(l)f(l)=g(l)f(l)+a(l)Openmirrors.com