714 Chapter 9 / Control Systems Analysis in State SpaceSubstitutingl 1 =2, and l 3 =1into these three equations givesSolving for a 0 (t),a 1 (t), and a 2 (t), we obtainHence,A–9–15. Show that the system described by
(9–114)(9–115)whereis completely output controllable if and only if the composite m*nrmatrixP, whereis of rank m. (Notice that complete state controllability is neither necessary nor sufficient for
complete output controllability.)Solution.Suppose that the system is output controllable and the output y(t)starting from any y(0),
the initial output, can be transferred to the origin of the output space in a finite time interval
0 tT. That is,y(T)=Cx(T)= 0 (9–116)P=CCB CAB CA^2 B p CAn-^1 BDC=m*n matrixB=n*r matrixA=n*n matrixy=output vector (m-vector) (mn)
u=control vector (r-vector)x=state vector (n-vector)y=Cxx#=Ax+Bu= C
e2t
0
012et-12e2t+13te2t
e2t- 3et+3e2t
- 4et+4e2t
0
et
- 4et+4e2t
S
+Aet-e2t+te2tBC
4
0
0
16
4
9
12
0
1
S
eAt=A4et-3e2t+2te2tBC
1
0
0
0
1
0
0
0
1
S +A-4et+4e2t-3te2tBC
2
0
0
1
2
3
4
0
1
S
a 2 (t)=et-e2t+te2ta 1 (t)=- 4 et+ 4 e^2 t- 3 te^2 ta 0 (t)=4et-3e2t+2te2ta 0 (t)+a 1 (t)+a 2 (t)=eta 0 (t)+ 2 a 1 (t)+ 4 a 2 (t)=e2ta 1 (t)+ 4 a 2 (t)=te2tOpenmirrors.com