Modern Control Engineering

(Chris Devlin) #1

Section 10–5 / State Observers 775


MATLAB Program 10–10


A = [0 1 0;0 0 1;-6 -11 -6];


B = [0;0;1];


J = [-2+j2sqrt(3) -2-j2sqrt(3) -6];


K = acker(A,B,J)


K =


90.0000 29.0000 4.0000


Abb = [0 1;-11 -6];


Aab = [1 0];


L = [-10 -10];


Ke = acker(Abb',Aab',L)'


Ke =


14


5


Equation (10–99) now becomes


(A MATLAB computation of this Keis given in MATLAB Program 10–10.)


= B


89

- 154

14

5

RB


0

1

R =B


14

5

R


Ke= bB


0

- 11

1

- 6

R


2
+ 20 B

0

- 11

1

- 6

R + 100 B


1

0

0

1

RrB


1

0

0

1

R



  • 1
    B


0

1

R


Referring to Equations (10–88) and (10–89), the equation for the minimum-order observer can
be given by


(10–100)

where


Noting that


the equation for the minimum-order observer, Equation (10–100), becomes


or


B


h 2
h 3

R = B


- 14

- 16

1

- 6

RB


h 2
h 3

R +B


- 191

- 260

Ry+ B


0

1

Ru


+B


0

- 6

R- B


14

5

R 0 ry+bB


0

1

R - B


14

5

R 0 ru


B


h 2
h 3

R = B


- 14

- 16

1

- 6

RB


h 2
h 3

R +bB


- 14

- 16

1

- 6

RB


14

5

R


Abb-Ke Aab= B


0

- 11

1

- 6

R -B


14

5

R[1 0]=B


- 14

- 16

1

- 6

R


H= xb-Ke y=xb-Ke x 1

H=AAbb-Ke AabBH+CAAbb-Ke AabBKe+Aba-Ke AaaDy+ABb-Ke BaBu
Free download pdf