Modern Control Engineering

(Chris Devlin) #1

This is because


6.The determinant of the product of two square matrices AandBis the product of


determinants, or


IfB=nmmatrix and C=mnmatrix, then


det(In+BC)=det(Im+CB)


If andD=m*mmatrix, then


whereS=D-CA^1 B.


If , then


whereT=A-BD^1 C.


If or then


Rank of Matrix. A matrix Ais said to have rank mif there exists an m*msub-


matrixMofAsuch that the determinant of Mis nonzero and the determinant of every


r*rsubmatrix (where ) of Ais zero.


As an example, consider the following matrix:


A= D


12 34


01 - 10


10 12


11 02


T


rm+ 1


detc


AB


0D


d =detAdetD


detc


A0


CD


d =detAdetD


B= 0 C= 0 ,


detc


AB


CD


d =detDdetT


DZ 0


detc


AB


CD


d =detAdetS


AZ 0


@AB@= @A@@B@


kA= D


ka 11 ka 12 p ka 1 m


ka 21 ka 22 p ka 2 m


oo o


kan 1 kan 2 p kanm


T


Appendix C / Vector-Matrix Algebra 875

Free download pdf