and
=17
Hence, the inverse of Ais
In what follows, we give formulas for finding inverse matrices for the 2*2matrix
and the 33matrix. For the 22matrix
the inverse matrix is given by
For the 3*3matrix
the inverse matrix is given by
A= C
abc
def
gh i
S where@A@ Z 0
A-^1 =
1
ad-bc
c
d -b
- ca
d
A= c
ab
cd
d wheread-bcZ 0
A-^1 =
adjA
@A@
= C
3
176
17 -4
17
7
17 -3
172
17
1
172
17 -7
17S
@A@
878 Appendix C / Vector-Matrix AlgebraG W
`
de
gh
-
ab
gh
` `
ab
de
`
- `
df
gi
` `
ac
gi
-
ac
df
A-^1 = `
1
@A@
`
ef
hi
-
bc
hi
` `
bc
ef
`
Note that
There are several more useful formulas available. Assume that A=n*nmatrix,
B=nmmatrix,C=mnmatrix, and D=m*mmatrix. Then
[A+BC]-^1 =A-^1 - A-^1 B[Im+CA-^1 B]-^1 CA-^1
(A-^1 )=(A)-^1
(A-^1 )¿=(A¿)-^1
(A-^1 )-^1 =A
Openmirrors.com