Detailed
Outline
I. Overview(pages 76–77)
A. Focus: computing OR forE, Drelationship
adjusting for confounding and effect
modification.
B. Review of the special case – theE, V, Wmodel:
i. The model:
logit PðÞ¼X aþbEþ~
p 1
i¼ 1
giViþE~
p 2
j¼ 1
djWj.
ii. Odds ratio formula for theE, V, Wmodel,
whereEis a (0, 1) variable:
RORE¼ 1 vs:E¼ 0 ¼exp bþ~
p 2
j¼ 1
djWj
!
:
II. Odds ratio for other codings of a dichotomous
E(pages 77–79)
A. For theE, V, Wmodel withEcoded asE¼aif
exposed and asE¼bif unexposed, the odds ratio
formula becomes
RORE¼ 1 vs:E¼ 0 ¼exp ðÞabbþðÞab ~
p 2
j¼ 1
djWj
"
B. Examples:a¼1, b¼0: ROR¼exp(b)
a¼1, b¼1: ROR¼exp(2b)
a¼100,b¼0: ROR¼exp(100b)
C. Final computed odds ratio has the same value
provided the correct formula is used for the
corresponding coding scheme, even though the
coefficients change as the coding changes.
D. Numerical example from Evans County study.
III. Odds ratio for arbitrary coding ofE(pages 79–82)
A. For theE, V, Wmodel whereE*andE**are any
two values ofEto be compared, the odds ratio
formula becomes
RORE*vs:E**¼exp E*E**
bþ E*E**
~
p 2
j¼ 1
djWj
"
B. Examples:E¼SSU¼social support status (0–5)
E¼SBP¼systolic blood pressure (interval).
C. No interaction odds ratio formula:
RORE*vs:E**¼exp E*E**
b
:
D. Interval variables, e.g., SBP: Choose values for
comparison that represent clinically meaningful
categories, e.g., quintiles.
92 3. Computing the Odds Ratio in Logistic Regression