V. The Wald test(pages 138–140)
A. Requires one parameter only to be tested, e.g.,
H 0 :b 3 ¼0.
B. Test statistic:Z¼^b=s^bwhich is approximately
N(0, 1) underH 0.
C. Alternatively,Z^2 is approximately chi square with
one df underH 0.
D. LR andZare approximately equal in large
samples, but may differ in small samples.
E. LR is preferred for statistical reasons, althoughZ
is more convenient to compute.
F. Example of Wald statistic forH 0 :b 3 ¼0inModel2:
Z¼^b 3 =s^b 3.
VI. Interval estimation: one coefficient
(pages 140–142)
A. Large sample confidence interval:
estimatepercentage point ofZestimated
standard error.
B. 95% CI forb 3 in Model 2:^b 3 1 : 96 s^b 3 :
C. IfX 3 is a (0, 1) exposure variable in Model 2, then
the 95% CI for the odds ratio of the effect of
exposure adjusted forX 1 andX 2 is given by
exp ^b 3 1 : 96 s^b 3
D. IfX 3 has coding other than (0, 1), the CI formula
must be modified.
VII. Interval estimation: interaction(pages 142–146)
A. Model 3 example:dOR¼e^l;where^l¼b^ 3 þ^b 4 X 1 þ^b 5 X 2
100(1a)% CI formula for OR:expl^Z 1 a 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
vard^l
Þ
q
;
where
dvar^l
Þ¼vard ^b 3
þðÞX 12 dvar ^b 4
þðÞX 22 dvar^b 5
þ 2 X 1 covd bb 3 ;^b 4
þ 2 X 2 covd ^b 3 ;b^ 5
þ 2 X 1 X 2 covd ^b 4 ;^b 5
:
B. General 100(1a)% CI formula for OR:
exp^lZ 1 a 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vard^l
Þ
q
whereORd¼e
^l
;
^l¼~
k
i¼ 1
^b
iðÞX^1 iX^0 i andvar^l
Þ¼var Sb^iðÞX 1 iX 0 i
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
linearsum
0
B
@
1
C
A:
Detailed Outline 155