Logistic Regression: A Self-learning Text, Third Edition (Statistics in the Health Sciences)

(vip2019) #1

The output produced by PROC LOGISTIC follows:


The LOGISTIC Procedure

Model Information
Data Set REF.EVANS
Response Variable chd
Number of Response Levels 2
Number of Observations 609
Link Function Logit
Optimization Technique Fisher's scoring

Response Profile
Ordered
Value CHD Count
1171
2 0 538

Model Fit Statistics

Criterion

Intercept
Only

Intercept and
Covariates
AIC 440.558 365.230
SC 444.970 404.936
2 Log L 438.558 347.230

Analysis of Maximum Likelihood Estimates

Parameter DF


Standard
Estimate Error Chi-Square Pr>ChiSq
Intercept 1 4.0497 1.2550 10.4125 0.0013
CAT 1 12.6894 3.1047 16.7055 <.0001
AGE 1 0.0350 0.0161 4.6936 0.0303
CHL 1 0.00545 0.00418 1.7000 0.1923
ECG 1 0.3671 0.3278 1.2543 0.2627
SMK 1 0.7732 0.3273 5.5821 0.0181
HPT 1 1.0466 0.3316 9.9605 0.0016
CH 1 2.3318 0.7427 9.8579 0.0017
CC 1 0.0692 0.0144 23.2020 <.0001


Odds Ratio Estimates

Effect

Point
Estimate

95% Wald
Confidence Limits
CAT <0.001 <0.001 0.001
AGE 1.036 1.003 1.069
CHL 0.995 0.986 1.003
ECG 1.444 0.759 2.745
SMK 2.167 1.141 4.115
HPT 2.848 1.487 5.456
CH 0.097 0.023 0.416
CC 1.072 1.042 1.102

604 Appendix: Computer Programs for Logistic Regression

Free download pdf