From the last expression we also find theintegralwhereIf we assume that all the lower priority classes
have negative exponentially distributed service
times (with mean service times bk= μp-1for pri-
ority class p) we find by applying the formula
above:If some of the lower classes have constant ser-
vice times we only have to replace the term
F(t/b 1 ; μkb 1 , ρ 1 ) with the corresponding termfor those classes.The result when fragmentation is performed is
found to be:4.3.3 Convolution of the Waiting
Time in a M/D/1 Queue with an
Exponentially Distributed Time
We shall use the expressionfor the normalised waiting time for the M/D/1
queue to express the convolution(in terms of a sum of terms q(t– k; ρ) that are
weighted with a geometrical factor as given
above). To show this expansion we write
F(t; μ; ρ) = μe–μtG(t;μ;ρ) whereBy applying the Lemma 1 (below) we get:.
Integrating (and collecting) we get:The corresponding result for F(t; μ, ρ) is then:Introducing the new summing variable j= k– i
in the first (double) sum we haveand the correspondingexpression may be written as:( 1 −ρ)
k= 0⎣⎦t∑
i= 0k∑
ρ
μ+ρ⎛
⎝⎜⎞
⎠⎟k((ρ+μ)(k−t))ii!e−ρ()k−t=( 1 −ρ)
j= 0⎣⎦t∑
i= 0⎣⎦t−j∑
ρ
μ+ρ⎛
⎝⎜⎞
⎠⎟i+j((ρ+μ)(i−(t−j)))ii!e−ρ()i−()t−j=( 1 −ρ)
j= 0⎣⎦t∑
ρ
μ+ρ⎛
⎝⎜⎞
⎠⎟ji= 0⎣⎦t−j∑
(ρ(i−(t−j)))ii!e−ρ()i−()t−j=
j= 0⎣⎦t∑
ρ
μ+ρ⎛
⎝⎜⎞
⎠⎟j
qt(−j;ρ)k= 0⎣⎦t∑
i= 0k∑ =
j= 0⎣⎦t∑
i= 0⎣⎦t−j∑
Ft(;μ,ρ)=
μ( 1 −ρ)
μ+ρρ
μ+ρ⎛
⎝⎜
⎞
⎠⎟
kk= 0⎣⎦t∑
⎛
⎝
⎜⎜
((ρ+μ)(k−t))ii= 0 i!k∑ e
−ρ()k−t−
ρ
μ+ρ⎛
⎝⎜
⎞
⎠⎟
k
eμ()k−t
k= 0⎣⎦t∑
⎞
⎠
⎟⎟.
G(t;μ,ρ)=−^1 −ρ
μ+ρρ
μ+ρ⎛
⎝⎜⎞
⎠⎟kk= 0⎣⎦t∑
⎛
⎝⎜⎜ eμk− ρ
μ+ρ⎛
⎝⎜⎞
⎠⎟k
eμk
k= 0⎣⎦t∑
((ρ+μ)(k−t))ii!e−()ρ+μ()k−t
i= 0k∑
⎞⎠⎟
⎟G(t;μ,φ)=(1−ρ) eμk
x=kt∫
k= 0⎣⎦t∑
[]ρ(k−x)k
k!e−()ρ+μ()k−xdx=−
1 −ρ
μ+ρρ
μ+ρ⎛
⎝⎜
⎞
⎠⎟
kk= 0⎣⎦t∑ eμk
ζ= 0()μ+ρ()k−t∫
ζk
k!e−ζdζG(t;μ,φ)= eμx
x= 0t∫ q(x;ρ)dx=
(1−ρ) eμk
k= 0⎣⎦x∑
x= 0t∫
[]ρ(k−x)kk!e−()ρ+μ()k−xdx.∫tx=0WM/D/ 1 (x)dx=b 1 G(t/b 1 ;ρ)G(t;ρ)= lim
μ→ 0
F(t;μ, ρ)=
1
ρ∑tk=0(q(t−k;ρ)−(1−ρ)).W 1 c(t)=1−
1 −ρ
1 −ρ 1
q(t/b 1 ;ρ 1 )−
1
1 −ρ 1(P
∑
k=2ρkF(t/b 1 ;μkb 1 ,ρ 1 ))
b 1
bk(
G(t/b 1 ;ρ 1 )−H(t−bk)G(
t−bk
b 1
;ρ 1))
W 1 c,f(t)=1−
1 −ρ
1 −ρ 1 q(t/b^1 ;ρ^1 )−
ρ− 1
1 −ρ 1
b 1
bf(
G(t/b 1 ;ρ 1 )−H(t−bf)G(
t−bf
b 1
;ρ 1))q(x;ρ)=(1−ρ)
∑xk=0[ρ(k−x)]k
k!
e−ρ(k−x)F(t;μ;ρ)=μ∫tx=0e−μ(t−x)q(x;ρ)dx