Side_1_360

(Dana P.) #1
From the last expression we also find the

integral

where

If we assume that all the lower priority classes
have negative exponentially distributed service
times (with mean service times bk= μp-1for pri-
ority class p) we find by applying the formula
above:

If some of the lower classes have constant ser-
vice times we only have to replace the term
F(t/b 1 ; μkb 1 , ρ 1 ) with the corresponding term

for those classes.

The result when fragmentation is performed is
found to be:

4.3.3 Convolution of the Waiting
Time in a M/D/1 Queue with an
Exponentially Distributed Time
We shall use the expression

for the normalised waiting time for the M/D/1
queue to express the convolution

(in terms of a sum of terms q(t– k; ρ) that are
weighted with a geometrical factor as given
above). To show this expansion we write
F(t; μ; ρ) = μe–μtG(t;μ;ρ) where

By applying the Lemma 1 (below) we get:

.

Integrating (and collecting) we get:

The corresponding result for F(t; μ, ρ) is then:

Introducing the new summing variable j= k– i
in the first (double) sum we have

and the corresponding

expression may be written as:

( 1 −ρ)
k= 0

⎣⎦t


i= 0

k


ρ
μ+ρ


⎝⎜


⎠⎟

k((ρ+μ)(k−t))i

i!

e−ρ()k−t

=( 1 −ρ)
j= 0

⎣⎦t


i= 0

⎣⎦t−j


ρ
μ+ρ


⎝⎜


⎠⎟

i+j

((ρ+μ)(i−(t−j)))

i

i!

e−ρ()i−()t−j

=( 1 −ρ)
j= 0

⎣⎦t


ρ
μ+ρ


⎝⎜


⎠⎟

j

i= 0

⎣⎦t−j


(ρ(i−(t−j)))

i

i!

e−ρ()i−()t−j

=
j= 0

⎣⎦t


ρ
μ+ρ


⎝⎜


⎠⎟

j
qt(−j;ρ)

k= 0

⎣⎦t


i= 0

k

∑ =


j= 0

⎣⎦t


i= 0

⎣⎦t−j


Ft(;μ,ρ)=
μ( 1 −ρ)
μ+ρ

ρ
μ+ρ


⎝⎜


⎠⎟

k

k= 0

⎣⎦t




⎜⎜

((ρ+μ)(k−t))

i

i= 0 i!

k

∑ e


−ρ()k−t


ρ
μ+ρ


⎝⎜


⎠⎟

k
eμ()k−t
k= 0

⎣⎦t




⎟⎟.

G(t;μ,ρ)=−^1 −ρ
μ+ρ

ρ
μ+ρ


⎝⎜


⎠⎟

k

k= 0

⎣⎦t




⎜⎜ eμk

− ρ
μ+ρ


⎝⎜


⎠⎟

k
eμk
k= 0

⎣⎦t


((ρ+μ)(k−t))

i

i!

e−()ρ+μ()k−t
i= 0

k






G(t;μ,φ)=

(1−ρ) eμk
x=k

t


k= 0

⎣⎦t


[]ρ(k−x)k
k!

e−()ρ+μ()k−xdx=


1 −ρ
μ+ρ

ρ
μ+ρ


⎝⎜


⎠⎟

k

k= 0

⎣⎦t

∑ eμk


ζ= 0

()μ+ρ()k−t


ζk
k!

e−ζdζ

G(t;μ,φ)= eμx
x= 0

t

∫ q(x;ρ)dx=


(1−ρ) eμk
k= 0

⎣⎦x


x= 0

t


[]ρ(k−x)

k

k!

e−()ρ+μ()k−xdx.

∫t

x=0

WM/D/ 1 (x)dx=b 1 G(t/b 1 ;ρ)

G(t;ρ)= lim
μ→ 0
F(t;μ, ρ)

=

1

ρ

∑t

k=0

(q(t−k;ρ)−(1−ρ)).

W 1 c(t)=1−
1 −ρ
1 −ρ 1
q(t/b 1 ;ρ 1 )


1

1 −ρ 1

(P


k=2

ρkF(t/b 1 ;μkb 1 ,ρ 1 )

)

b 1
bk

(

G(t/b 1 ;ρ 1 )−H(t−bk)G

(

t−bk
b 1
;ρ 1

))

W 1 c,f(t)=1−
1 −ρ
1 −ρ 1 q(t/b^1 ;ρ^1 )−
ρ− 1
1 −ρ 1


b 1
bf

(
G(t/b 1 ;ρ 1 )−H(t−bf)G

(
t−bf
b 1
;ρ 1

))

q(x;ρ)=(1−ρ)


∑x

k=0

[ρ(k−x)]k
k!
e−ρ(k−x)

F(t;μ;ρ)=μ

∫t

x=0

e−μ(t−x)q(x;ρ)dx
Free download pdf