100 ACIDS AND BASES: OXIDATION AND REDUCTION
Table 4.3
REDOX POTENTIALS FOR ION-ION SYSTEMS (ACID SOLUTIONS)
£(V)
Sn^4 + (aq) +
Increasing
oxidising
power
yI 2 (s) -f e~
Fe^3 + (aq) +
iBr 2 (l) + e~
IOj(aq) -f (
02 (g) + 4H
Cr 2 O?"(aq)
iCl 2 (g) + e'
MnO^Caq)
iF 2 (g) 4- e~
2e" -^Sn^2 ^(aq)
-> I~(aq)
e~ -> Fe^2 + (aq)
-> Br"(aq)
jH 3 O^ ^ 5e"" -+
JO + 4e" -^6H
-f 14H 3 O+ -f 6
- -* CT(aq)
f 8H 3 O+ -h 5^~- F-(aq)
iI 2 (s) + 9H 2 O
20
r -*2Cr3+(aq)
H-21H 2 O
-M2+(aq)
+ 12H 2 O
+ 0.15
+ 0.54
+ 0.76
Increasing -(-1.07
reducing 4-1.19
power +1.23
+ 1.33
+ 1.36
+ 1-52
+ 2.80
THE EFFECT OF CONCENTRATION AND
TEMPERATURE ON POTENTIALS
Changes in ion concentration and temperature influence redox
potentials by affecting the equilibrium
M(s) ^ M*+(aq) + ne~
The change in the redox potential is given quantitatively by the
Nernst equation :
RT
where £ is the actual electrode potential, E^ is the standard electrode
potential, R the gas constant, Tthe temperature in K, F the Faraday
constant and n the number of electrons.
Substituting for R and F and for a temperature of 298 K this
equation approximates to :
The redox (electrode) potential for ion-ion redox systems at any
concentration and temperature is given by the Nernst equation in
the form
^ RT rOxidised state"!
+ ~nF ge [TedSoedlt ate]