236 7 Eigensystems
−
h ̄^2
2 mα^2
d^2
dρ^2 u(ρ)+
k
2 α
(^2) ρ (^2) u(ρ) =E u(ρ).
We multiply thereafter with 2 mα^2 /h ̄^2 on both sides and obtain
−d
2
dρ^2
u(ρ)+mk
h ̄^2
α^4 ρ^2 u(ρ) =^2 mα
2
h ̄^2
E u(ρ).
The constantαcan now be fixed so that
mk
h ̄^2
α^4 = 1 ,
or
α=
(
̄h^2
mk
) 1 / 4
.
Defining
λ=
2 mα^2
̄h^2
E,
we can rewrite Schrödinger’s equation as
−
d^2
dρ^2
u(ρ)+ρ^2 u(ρ) =λu(ρ).
This is the first equation to solve numerically. In three dimensions the eigenvalues forl= 0
areλ 0 = 3 ,λ 1 = 7 ,λ 2 = 11 ,....
We use the by now standard expression for the second derivative of a functionu
u′′=
u(ρ+h)− 2 u(ρ)+u(ρ−h)
h^2
+O(h^2 ),
wherehis our step. Next we define minimum and maximum values for the variableρ,ρmin= 0
andρmax, respectively. You need to check your results for the energies against different values
ρmax, since we cannot setρmax=∞.
With a given number of steps,nstep, we then define the stephas
h=
ρmax−ρmin
nstep
.
Define an arbitrary value ofρas
ρi=ρmin+ih i= 0 , 1 , 2 ,...,nstep
we can rewrite the Schrödinger equation forρias
−
u(ρi+h)− 2 u(ρi)+u(ρi−h)
h^2
+ρi^2 u(ρi) =λu(ρi),
or in a more compact way
−
ui+ 1 − 2 ui+ui− 1
h^2
+ρi^2 ui=−
ui+ 1 − 2 ui+ui− 1
h^2
+Viui=λui,
whereVi=ρ^2 iis the harmonic oscillator potential. Define first the diagonal matrix element
di=
2
h^2
+Vi,