Computational Physics - Department of Physics

(Axel Boer) #1

13.4 Phase Transitions and Critical Phenomena 433


interaction between two spins at sitesiandj, respectively, by adding and subtracting the
mean value of the spin〈S〉, that is


SiSj= (Si−〈S〉+〈S〉)(Si−〈S〉+〈S〉)≈〈S〉^2 +〈S〉(Si−〈S〉)+〈S〉(Sj−〈S〉),

where we have ignored terms of the order(Si−〈S〉)(Si−〈S〉). These are the terms which lead
to correlations between neighbouring spins. In mean field theory we ignore correlations.
This means that we can rewrite the Hamiltonian


E=−J

N

<i j>

SkSl−B

N

i

Si,

as
E=−J∑


〈S〉^2 +〈S〉(Si−〈S〉)+〈S〉(Sj−〈S〉)−B∑
i

Si,

resulting in
E=−(B+zJ〈S〉)∑
i


Si+zJ〈S〉^2 ,

withzthe number of nearest neighbours for a given sitei. We have included the external
magnetic fieldBfor completeness.
We can then define an effective field which all spins see, namely


Beff= (B+zJ〈S〉).

To obtain the vaue of〈S〉)we employ again our results from the canonical ensemble. The
partition function reads in this case


Z=e−NzJ〈S〉

(^2) /kT
( 2 cosh(Beff/kT))N,
with a free energy
F=−kT lnZ=−NkT ln( 2 )+NzJ〈S〉^2 −NkT ln(cosh(Beff/kT))
and minimizingFwith respect to〈S〉we arrive at
〈S〉=tanh( 2 cosh(Beff/kT)).
Close to the phase transition we expect〈S〉to become small and eventually vanish. We can
then expandFin powers of〈S〉as
F=−NkT ln( 2 )+NzJ〈s〉^2 −NkT−BN〈s〉+NkT


(

1

2

〈s〉^2 +

1

12

〈s〉^4 +...

)

,

and using〈M〉=N〈S〉we can rewrite Helmholtz free energy as


F=F 0 −B〈M〉+

1

2 a〈M〉

(^2) +^1
4 b〈M〉
(^4) +...
Let〈M〉=mand
F=F 0 +


1

2

am^2 +

1

4

bm^4 +

1

6

cm^6

Fhas a minimum at equilibriumF′(m) = 0 andF′′(m)> 0


F′(m) = 0 =m(a+bm^2 +cm^4 ),
Free download pdf