Computational Physics - Department of Physics

(Axel Boer) #1

14.5 Variational Monte Carlo for atoms 469


1
R


∂r
(r^2

∂R

∂r

)+

2 mrke^2
̄h^2

+

2 mr^2
̄h^2

E=Cr, (14.14)

whereCrandCφare constants. The angle-dependent differential equations result in the so-
called spherical harmonic functions as solutions, with quantum numberslandml. These
functions are given by


Ylml(θ,φ) =P(θ)F(φ) =


( 2 l+ 1 )(l−ml)!
4 π(l+ml)!
Plml(cos(θ))exp(imlφ),

withPlmlbeing the associated Legendre polynomials. They can be rewritten as


Ylml(θ,φ) =sin|ml|(θ)×(polynom(cosθ))exp(imlφ),

with the following selected examples


Y 00 =


1

4 π,

forl=ml= 0 ,


Y 10 =


3

4 π
cos(θ),

forl= 1 ogml= 0 ,


Y 1 ± 1 =∓ 1


3

8 π
sin(θ)exp(±iφ),

forl= 1 ogml=± 1 , and


Y 20 =


5

16 π
(3 cos^2 (θ)− 1 )

forl= 2 ogml= 0. The quantum numberslandml represent the orbital momentum and
projection of the orbital momentum, respectively and take the valuesl≥ 0 ,l= 0 , 1 , 2 ,...and
ml=−l,−l+ 1 ,...,l− 1 ,l. The spherical harmonics forl≤ 3 are listed in Table 14.1.


Spherical Harmonics

ml\l 0 1 2 3

+3 −^18 (^35 π)^1 /^2 sin^3 θe+^3 iφ
+2^14 (^152 π)^1 /^2 sin^2 θe+^2 iφ^14 (^1052 π)^1 /^2 cosθsin^2 θe+^2 iφ
+1 −^12 ( 23 π)^1 /^2 sinθe+iφ−^12 (^152 π)^1 /^2 cosθsinθe+iφ−^18 (^212 π)^1 /^2 (5 cos^2 θ− 1 )sinθe+iφ

(^02) π^11 / 2 12 (π^3 )^1 /^2 cosθ^14 (π^5 )^1 /^2 (3 cos^2 θ− 1 )^14 (π^7 )^1 /^2 ( 2 −5 sin^2 θ)cosθ
-1 +^12 ( 23 π)^1 /^2 sinθe−iφ+^12 (^152 π)^1 /^2 cosθsinθe−iφ+^18 (^212 π)^1 /^2 (5 cos^2 θ− 1 )sinθe−iφ
-2^14 (^152 π)^1 /^2 sin^2 θe−^2 iφ^14 (^1052 π)^1 /^2 cosθsin^2 θe−^2 iφ
-3 +^18 (^35 π)^1 /^2 sin^3 θe−^3 iφ
Table 14.1Spherical harmonicsYlmlfor the lowestlandmlvalues.
We focus now on the radial equation, which can be rewritten as

Free download pdf