14.5 Variational Monte Carlo for atoms 469
1
R
∂
∂r
(r^2
∂R
∂r
)+
2 mrke^2
̄h^2
+
2 mr^2
̄h^2
E=Cr, (14.14)
whereCrandCφare constants. The angle-dependent differential equations result in the so-
called spherical harmonic functions as solutions, with quantum numberslandml. These
functions are given by
Ylml(θ,φ) =P(θ)F(φ) =
√
( 2 l+ 1 )(l−ml)!
4 π(l+ml)!
Plml(cos(θ))exp(imlφ),
withPlmlbeing the associated Legendre polynomials. They can be rewritten as
Ylml(θ,φ) =sin|ml|(θ)×(polynom(cosθ))exp(imlφ),
with the following selected examples
Y 00 =
√
1
4 π,
forl=ml= 0 ,
Y 10 =
√
3
4 π
cos(θ),
forl= 1 ogml= 0 ,
Y 1 ± 1 =∓ 1
√
3
8 π
sin(θ)exp(±iφ),
forl= 1 ogml=± 1 , and
Y 20 =
√
5
16 π
(3 cos^2 (θ)− 1 )
forl= 2 ogml= 0. The quantum numberslandml represent the orbital momentum and
projection of the orbital momentum, respectively and take the valuesl≥ 0 ,l= 0 , 1 , 2 ,...and
ml=−l,−l+ 1 ,...,l− 1 ,l. The spherical harmonics forl≤ 3 are listed in Table 14.1.
Spherical Harmonics
ml\l 0 1 2 3
+3 −^18 (^35 π)^1 /^2 sin^3 θe+^3 iφ
+2^14 (^152 π)^1 /^2 sin^2 θe+^2 iφ^14 (^1052 π)^1 /^2 cosθsin^2 θe+^2 iφ
+1 −^12 ( 23 π)^1 /^2 sinθe+iφ−^12 (^152 π)^1 /^2 cosθsinθe+iφ−^18 (^212 π)^1 /^2 (5 cos^2 θ− 1 )sinθe+iφ
(^02) π^11 / 2 12 (π^3 )^1 /^2 cosθ^14 (π^5 )^1 /^2 (3 cos^2 θ− 1 )^14 (π^7 )^1 /^2 ( 2 −5 sin^2 θ)cosθ
-1 +^12 ( 23 π)^1 /^2 sinθe−iφ+^12 (^152 π)^1 /^2 cosθsinθe−iφ+^18 (^212 π)^1 /^2 (5 cos^2 θ− 1 )sinθe−iφ
-2^14 (^152 π)^1 /^2 sin^2 θe−^2 iφ^14 (^1052 π)^1 /^2 cosθsin^2 θe−^2 iφ
-3 +^18 (^35 π)^1 /^2 sin^3 θe−^3 iφ
Table 14.1Spherical harmonicsYlmlfor the lowestlandmlvalues.
We focus now on the radial equation, which can be rewritten as