Computational Physics - Department of Physics

(Axel Boer) #1

16.5 Optimizing the∇^2 ΨT/ΨTRatio 523


∇i|D(y)|
|D(y)|

=

N

j= 1

∇iDi j(y)D−ji^1 (y) =

N

j= 1

∇iφj(yi)D−ji^1 (y),

which can be expressed in terms of the transpose and inverse of the Slater matrix evaluated
at the old positions [94] to get


∇i|D(y)|
|D(y)|

=

1

R

N

j= 1

∇iφj(yi)D−ji^1 (x). (16.12)

Computing a single derivative is anO(N)operation. Since there aredNderivatives, the total
time scaling becomesO(dN^2 ).


16.5 Optimizing the∇^2 ΨT/ΨTRatio


From the single-particle kinetic energy operator, the expectation value of the kinetic energy
expressed in atomic units for electroniis


〈K̂i〉=−

1

2

〈Ψ|∇^2 i|Ψ〉
〈Ψ|Ψ〉

, (16.13)

which is obtained by using Monte Carlo integration. The energy of each space configuration
is cummulated after each Monte Carlo cycle. For each electron we evaluate


Ki=−

1

2

∇^2 iΨ
Ψ

. (16.14)

Following a procedure similar to that of section 16.4, the term for the kinetic energy is ob-
tained by


∇^2 Ψ
Ψ

=

∇^2 (ΨDΨC)

ΨDΨC

=

∇·[∇(ΨDΨC)]

ΨDΨC

=

∇·[ΨC∇ΨD+ΨD∇ΨC]

ΨDΨC

=

∇ΨC·∇ΨD+ΨC∇^2 ΨD+∇ΨD·∇ΨC+ΨD∇^2 ΨC

ΨDΨC

(16.15)

∇^2 Ψ

Ψ

=

∇^2 ΨD

ΨD

+

∇^2 ΨC

ΨC

+ 2

∇ΨD

ΨD

·

∇ΨC

ΨC

=

∇^2 (|D|↑|D|↓)

(|D|↑|D|↓)

+

∇^2 ΨC

ΨC

+ 2

∇(|D|↑|D|↓)

(|D|↑|D|↓)

·

∇ΨC

ΨC

,

or
∇^2 Ψ
Ψ =


∇^2 |D|↑

|D|↑ +

∇^2 |D|↓

|D|↓ +

∇^2 ΨC

ΨC +^2

[

∇|D|↑

|D|↑ +

∇|D|↓

|D|↓

]

·

∇ΨC

ΨC, (16.16)

where thelaplace-determinant-to-determinant ratiois given by


∇^2 i|D(x)|
|D(x)|

=

N

j= 1

∇^2 iDi j(x)D−ji^1 (x) =

N

j= 1

∇^2 iφj(xi)D−ji^1 (x) (16.17)
Free download pdf