Computational Physics - Department of Physics

(Axel Boer) #1

526 16 Improved Monte Carlo Approaches to Systems of Fermions


An equivalent equation is obtained for the exponential formafter replacinggi jbyexp(gi j),
yielding:
1
ΨC


∂ΨC

∂xk

=

k− 1

i= 1

∂gik
∂xk

+

N

i=k+ 1

∂gki
∂xk

, (16.24)

with both expressions scaling asO(N).


Later, using the identity

∂xi
gi j=−



∂xj
gi j (16.25)

on the right hand side terms of Eq. (16.23) and Eq. (16.24), weget expressions where all the
derivatives act on the particle are represented by thesecondindex ofg:


1
ΨC

∂ΨC

∂xk

=

k− 1

i= 1

1

gik

∂gik
∂xk


N

i=k+ 1

1

gki

∂gki
∂xi

, (16.26)

and for the exponential case:


1
ΨC

∂ΨC

∂xk

=

k− 1

i= 1

∂gik
∂xk


N

i=k+ 1

∂gki
∂xi

. (16.27)

16.9.1Special Case: Correlation Functions Depending on the Relative Distance


For correlation forms depending only on the scalar distancesri j, we note that


∂gi j
∂xj

=

∂gi j
∂ri j

∂ri j
∂xj

=

xj−xi
ri j

∂gi j
∂ri j

, (16.28)

after substitution in Eq. (16.26) and Eq. (16.27) we arrive at


1
ΨC

∂ΨC

∂xk

=

k− 1

i= 1

1

gik

rik
rik

∂gik
∂rik


N

i=k+ 1

1

gki

rki
rki

∂gki
∂rki

. (16.29)

Note that for the Padé-Jastrow form we can setgi j≡g(ri j) =ef(ri j)=efi jand


∂gi j
∂ri j
=gi j
∂fi j
∂ri j

. (16.30)

Therefore,
1
ΨPJ


∂ΨPJ

∂xk

=

k− 1

i= 1

rik
rik

∂fik
∂rik


N

i=k+ 1

rki
rki

∂fki
∂rki

, (16.31)

where
ri j=|rj−ri|= (xj−xi)eˆ 1 + (yj−yi)eˆ 2 + (zj−zi)eˆ 3 (16.32)


is the vectorial distance. When the correlation function isthelinear Padé-Jastrow, we set


fi j=
ai jri j
( 1 +βi jri j)

, (16.33)
Free download pdf