c03 JWBS043-Rogers September 13, 2010 11:24 Printer Name: Yet to Come
52 THE THERMODYNAMICS OF SIMPLE SYSTEMSPROBLEMS AND EXAMPLE
Example 3.1 Line Integrals
What is the line integral of the function f(x,y)=xyover the parabolic curve
y=f(x)=x^2 /2from(x,y)=( 0 , 0 )to(
1 ,^12
)
?
Solution 3.1 One way of writing a line integral of the functionI=∫
Cf(x,y)dsover the curve C is to specifyy=f(x) andds=(
1 +
(
dy
dx) 2 )^1 /^2
dx. For example,integrating the function f(x,y)=xyover the parabolic curvey=f(x)=x^2 / 2
from(x,y)=( 0 , 0 )to(
1 ,^12
)
. We have (Steiner, 1996)
f(x,y)=xy=x(
x^2
2)
=
x^3
2anddy
dx=
d(
x^2
2)
dx=xThus,I=
∫
Cf(x,f(x))(
1 +
(
dy
dx) 2 ) 1 / 2
dx=∫ 1
0x^3
2(
1 +x^2)^1
(^2) dx
=
1
2
∫ 1
0(
x^6 +x^8) 1 / 2
dxwhere the limits of integration are the limits onx. Integration by Mathcad©Cgives1
2∫ 1
0(
x^6 +x^8). 5
dx= 0. 161Problem 3.1
One expression of a line integral is
∫CF(x,y)dx+G(x,y)dywhere the subscriptCindicates a line (or curve) integral. IfF(x,y)=−y,G(x,y)=
xy, and the line is the diagonal fromx=1toy=1 (Fig. 3.8). Carry out the
integration.