Science - USA (2022-01-28)

(Antfer) #1

Our results provide evidence that the gut
microbiome plays a functional role during the
hibernation season, building upon earlier re-
sults that suggest a possible role for the micro-


biome in pre-hibernation fattening ( 17 ). Our
demonstration of monogastric urea nitrogen
salvage as a mechanism facilitating protein
synthesis under nitrogen limitation has potential

implications beyond hibernation. For example,
muscle wasting affects hundreds of millions of
people globally as a result of nitrogen-limited
diets ( 18 ) and sarcopenia ( 19 ), and there is
evidence for humans possessing the neces-
sary machinery for urea nitrogen salvage ( 20 ).
Understanding the mechanisms by which
hibernators maintain protein balance and
mitigate muscle wasting under severe nitro-
gen limitation may inform strategies for muscle
preservation in humans.

REFERENCES AND NOTES


  1. Y.-F. Gaoet al.,Comp. Biochem. Physiol. A Mol. Integr. Physiol.
    161 , 296–300 (2012).

  2. A. G. Hindleet al.,J. Exp. Biol. 218 , 276–284 (2015).

  3. M. L. Riedesel, J. M. Steffen,Fed. Proc. 39 , 2959–2963 (1980).

  4. A. K. Patra, J. R. Aschenbach,J. Adv. Res. 13 , 39–50 (2018).

  5. H. Harlow, inComparative Physiology of Fasting, Starvation, and
    Food Limitation, M. D. McCue, Ed. (Springer, 2012) pp. 277–296.
    https://link.springer.com/10.1007/978-3-642-29056-5_17

  6. M. E. Walpoleet al.,J. Dairy Sci. 98 , 1204–1213 (2015).

  7. L. E. Epperson, A. Karimpour-Fard, L. E. Hunter, S. L. Martin,
    Physiol. Genomics 43 , 799–807 (2011).

  8. Z. Luet al.,Am. J. Physiol. Regul. Integr. Comp. Physiol. 308 ,
    R283–R293 (2015).

  9. H. V. Carey, W. A. Walters, R. Knight,Am. J. Physiol. Regul.
    Integr. Comp. Physiol. 304 , R33–R42 (2013).

  10. T. J. Stevenson, K. N. Duddleston, C. L. Buck,Appl. Environ.
    Microbiol. 80 , 5611–5622 (2014).

  11. Y. Chenet al.,Am. J. Physiol. Gastrointest. Liver Physiol. 318 ,
    G189–G202 (2020).

  12. L. E. Epperson, J. C. Rose, H. V. Carey, S. L. Martin,Am. J.
    Physiol. Regul. Integr. Comp. Physiol. 298 , R329–R340 (2010).

  13. S. A. Riceet al.,Nat. Metab. 2 , 1459–1471 (2020).

  14. C. Rémésy, C. Moundras, C. Morand, C. Demigné,Am. J. Physiol.
    272 , G257–G264 (1997).

  15. O. J. Rongstad,J. Mammal. 46 , 76 (1965).

  16. H. M. Mousa, K. E. Ali, I. D. Hume,Comp. Biochem. Physiol. A
    Comp. Physiol. 74 , 715–720 (1983).

  17. F. Sommeret al.,Cell Rep. 14 , 1655–1661 (2016).

  18. FAO,“The State of Food Insecurity in the World (SOFI)”(FAO,
    2014) http://www.fao.org/publications/card/en/c/56efd1a2-0f6e-
    4185-8005-62170e9b27bb/.

  19. E.Marty,Y.Liu,A.Samuel,O.Or,J.Lane,Bone 105 , 276–286 (2017).

  20. M. Langran, B. J. Moran, J. L. Murphy, A. A. Jackson,
    Clin. Sci. (Lond.) 82 , 191–198 (1992).


ACKNOWLEDGMENTS
We thank A. Steinberg, S. Cailey, W. Porter, S. Martin, and M. T. Grahn
for assistance, and the reviewers for insightful comments.
Funding:Work was supported by NSF Grant IOS-1558044 to H.V.C.,
F.M.A.-P., and G.S.; NIH Grants P41GM136463, P41GM103399
(NIGMS), and P41RR002301 to the National Magnetic Resonance
Facility at Madison; National Institute of General Medical Sciences of
the NIH traineeship T32GM008349 and NSF Graduate Research
Fellowship DGE-1747503 to E.C.; NSERC Canada Postdoctoral
Fellowship to M.D.R.Author contributions:H.V.C., F.M.A.-P., G.S.,
M.D.R., and M.T. designed the study; M.D.R., E.C., M.T., S.G., and K.V.
collected data; M.D.R., F.M.A.-P., G.S., E.C., and Y.L. conducted
analyses; M.D.R. wrote the manuscript with input from all authors.
Competing interests:F.M.A.-P. is the founder of MetResponse, LLC
and Isomark Health Inc. The other authors declare no competing
interests.Data and materials availability:Metagenomic data
are available at NCBI (PRJNA693524); other data are available as
supplementary materials.

SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abh2950
Materials and Methods
Figs. S1 to S8
Tables S1 to S3
References ( 21 – 49 )
MDAR Reproducibility Checklist
Data S1

1 March 2021; resubmitted 15 July 2021
Accepted 2 December 2021
10.1126/science.abh2950

SCIENCEscience.org 28 JANUARY 2022¥VOL 375 ISSUE 6579 463


A

B

C

Fig. 4.^15 N-urea nitrogen incorporation into metabolite and protein pools of gut microbiome and host
tissues.(A) Cecal content, (B) liver, and (C) muscle (quadriceps) of microbiome-intact (filled bars) and
microbiome-depleted (open bars) squirrels. For each panel,^15 N-Protein portrays^15 N-incorporation into
protein,^15 N-Metabolome portrays^15 N-incorporation into the total pool of metabolites (identifiable and
nonidentifiable), and the remaining plots portray^15 N-incorporation into the metabolite named above the plot.
Metabolomic data are relative abundances in arbitrary units. Asterisks indicate a significant difference
between microbiome groups within a season, and different lowercase letters indicate significant seasonal
difference among microbiome-intact groups. See tables S1 and S2 for statistical results.n= 5 for all data,
except for early winter microbiome depleted (n= 4) and cecum content^15 N-protein [n= 1 (pooled samples)].


RESEARCH | REPORTS
Free download pdf