The portfolio variance is given by the weighted asset variances and
covariances.
(8.1)
whereρ 12 = correlation coefficients of assets 1, 2
σ 12 = covariance of assets 1, 2
let x 2 = 1 – x 1
To minimize the portfolio variance, one should take the first derivative of
the variance with respect to the decision variable, x 1 , and set the function
equal to zero.
(8.2)
(8.2)
Equation (8.2) is the risk-minimizing investment in security one in a two-asset
portfolio. One can compare the portfolio variances of the optimally weighted
portfolio with an equally weighted portfolio, in which x 1 = x 2 = 0.50.
let x 1 = weight of JNJ
x 2 = weight of IBM
The portfolio expected return is a weighted combination of asset expected
returns.
E(Rp) = x 1 E(R 1 ) + x 2 E(R 2 )
= .5(.0852) + .5(.0768) = .0810 (8.3)
σσσσ
σσρσσ
σσρσσρσσ
σ
p
p
xxxx
xxxx
xxxx x
x
2
1
2
1
2
1
2
2
2
1112
1
2
1
2
1
2
2
2
111212
1
2
1
2
112
2
112 1 2 1
2
1212
2
1
2
121
121
11 2 2
=+−+−
=+−+−
=+−−+−
=
() ()
() ()
()()
σσσρσσρσσ
∂σρ
∂
σσσρσσρσσ
σρσσσσρσ
1
2
11
2
2
2
112 1 2 1
2
12 12
2
1
11
2
2
2
12
2
121 2 1 12 12
2
2
1212 1 1
2
12
2
112
12 2 2
2222 4 0
22 2 2 4
+−++−
=−++−=
−=+−
()xx x x
x
xx x
xxx 112
1
2
2
2
12 12 1 2
2
12 12
1
22 121
1
2
2
2
121 2
2
2
σ
σσρσσσρσσ
σσρσ
σσρσσ
()
()
+−=−
=
−
+−
x
x
σσσσ
σρσσ
p xx xx
2
1
2
1
2
2
2
2
2
1112
12 12 1 2
=++− 21
=
()