156 3 Quantum Mechanics – II
3.123 Using the Born approximation, the amplitude of scattering by a spherically
symmetric potentialV(r) with a momentum transferqis given by
A=
∫∞
0
[
sin
(qr
)
qr
]
V(r)4πr^2 dr
Show that in the case of a Yukawa-type potential, this leads to an amplitude
proportional to (q^2 +m^2 c^2 )−^1.
3.3 Solutions..................................................
3.3.1 Wave Function ....................................
3.1 En=
n^2 h^2
8 mL^2
=
π^2 n^2 ^2 c^2
2 mc^2 L^2
=
π^2 ×(197.3MeV−fm)^2 n^2
2 x 0 .511(MeV)×(10^6 fm)^2
= 0. 038 n^2 eV
E 1 = 0 .038 eV,E 2 = 0 .152 eV,E 3 = 0 .342 eV,E 4 = 0 .608 eV
ΔE 43 =E 4 −E 3 = 0. 608 − 0. 342 = 0 .266 eV
λ=
1 , 241
0. 266
= 4 ,665 nm
3.2ψ(x)=(π/α)−^1 /^4 exp
(
−
α^2
2
x^2
)
Varx=<x^2 >−<x>^2
The expectation value
<x>=
∫∞
−∞
ψ∗xψdx= 0
becauseψand alsoψ∗are even functions whilexis an odd function. There-
fore the integrand is an odd function
<x^2 >=
(π
α
)− 1 / 2 ∫∞
−∞
x^2 exp(−α^2 x^2 )dx
Putα^2 x^2 =y;dx=^1 / 2 α
√
y
<x^2 >=
(
πα^5
)− 1 / 2 ∫∞
0
y^1 /^2 e−ydy
But
∫∞
0 y
1 / (^2) e−ydy=Γ(3/2)=√π/ 2
Varx=<x^2 >=(4α^5 )−^1 /^2