3.3 Solutions 185
3.37 (a)un=
( 2
L
) 1 / 2
sin
(nπx
L
)
<x>=
∫ L
0
u∗nxundx=
(
2
L
)∫L
0
xsin^2
(nπx
a
)
dx
=
L
2
+
(
L
4 n^2 π^2
)
(cos(2nπ)−1)
The second term on the RHS vanishes for any integral value ofn. Thus
<x>=
L
2
Varx=σ^2 =<(x−<x>)^2 >=<x^2 >−<x>^2 =<x^2 >−
L^2
4
Now <x^2 >=
∫L
0
u∗nx^2 undx=
(
2
L
)∫L
0
x^2 sin^2
(nπx
L
)
dx
=
L^2
3
−
L^2
2 n^2 π^2
σ^2 =<x^2 >−<x>^2 =
L^2
3
−
L^2
2 n^2 π^2
−
L^2
4
=
(
L^2
12
)(
1 −
6
n^2 π^2
)
Forn→∞,<x>=L 2 ;σ^2 →L^2 / 12
(b) Classically the expected distribution is rectangular, that is flat.
The normalized function
f(x)=
1
L
<x>=
∫
xf(x)dx=
∫ L
0
xdx
L
=
L
2
σ^2 =<x^2 >−<x>^2
<x^2 >=
∫ L
0
x^2 f(x)dx=L^2 / 3
∴σ^2 =
L^2
3
−
L^2
4
=
L^2
12
Fig. 3.14
3.38 H=
(
−
^2
2 m
)
∇^2 +ar^2
[
1 −
5
6
sin^2 θcos^2 φ
]
(1)
In spherical coordinatesx=rsinθ cosφ. Therefore