186 3 Quantum Mechanics – II
H=
(
−
^2
2 m
)
∇^2 +a
[
x^2 +y^2 +z^2 −
5
6
x^2
]
=
(
−
^2
2 m
)
∇^2 +a
[
x^2
6
+y^2 +z^2
]
(2)
The Schrodinger’s equation is
Hψ(x,y,z)=Eψ(x,y,z)(3)
This equation can be solved by the method of separation of variables.
Let
ψ(x,y,z)=ψxψyψz (4)
Hψ(x,y,z)=−
^2
2 m
(
∂^2
∂x^2
+
∂^2
∂y^2
+
∂^2
∂z^2
)
ψxψyψz+a
[
x^2
6
+y^2 +z^2
]
ψxψyψz=Eψxψyψz
−
^2
2 m
ψyψz
∂^2 ψx
∂x^2
−
^2
2 m
ψxψz
∂^2 ψy
∂x^2
−
^2
2 m
ψxψy
∂^2 ψz
∂X^2
+
ax^2
6
ψxψyψz+ay^2 ψxψyψz+az^2 ψxψyψz=Eψxψyψz
Dividing throughout byψxψyψz
−
^2
2 m
1
ψx
∂^2 ψx
∂x^2
−
^2
2 m
1
ψy
∂^2 ψy
∂y^2
−
^2
2 m
1
ψz
∂^2 ψz
∂z^2
+
ax^2
6
+ay^2 +az^2 =E
(5)
−
^2
2 m
1
ψx
∂^2 ψx
∂x^2
+
ax^2
6
=E 1
a
6
=^1 / 2 k 1 (6)
−
^2
2 m
1
ψy
∂^2 ψy
∂y^2
+ay^2 =E 2 a=^1 / 2 k 2 (7)
−
^2
2 m
1
ψz
∂^2 ψz
∂z^2
+az^2 =E 3 a=^1 / 2 k 2 (8)
E 1 =(n 1 +^1 / 2 )ω 1 ;E 2 =(n 1 +^1 / 2 )ω 2 ;E 3 =(n 3 +^1 / 2 )ω 3
ω 1 =
√
k 1
m
=
√
a
3 m
;ω 2 =ω 3 =
√
2 a
m
E=E 1 +E 2 +E 3 =
(
n 1 +
1
2
)
ω 1 +(n 2 +n 3 +1)ω 2
The lowest energy level corresponds ton 1 =n 2 =n 3 =0, with
E=
ω 1
2
+ω 2 =
(√
1
12
+
√
2
)
√(
a
m
)
It is non-degenerate.
The next higher state is degenerate withn 1 = 1 ,n 2 = 0 ,n 3 =0;
E=
3
2
√
a
3 m
+
√
2 a
m
=
(√
3
4
+
√
2
)
√
a
m
This is also non-degenerate.