3.3 Solutions 187
3.39 (a)
[(
−
^2
2 m
)
∇^2 +V
]
ψ(x,y,z)=Eψ(x,y,z)(1)
PutV= 0
(
−
^2
2 m
)[
∂^2
∂x^2
+
∂^2
∂y^2
+
∂^2
∂z^2
]
ψ(x,y,z)=Eψ(x,y,z)
Let
ψ(x,y,z)=X(x)Y(y)Z(x) (2)
YZ
∂^2 X
∂x^2
+ZX
∂^2 Y
∂y^2
+XY
∂Z
∂z^2
=−
(
2 mE
^2
)
XY Z
Dividing throughout byXYZ
1
Y
∂^2 Y
∂y^2
+
1
Z
∂^2 Z
∂z^2
=−
1
X
∂^2 X
∂x^2
−
2 mE
^2
(3)
LHS is a function ofyandzonly while the RHS is a function ofxonly.
The only way (3) can be satisfied is that each side is equal to a constant, say –
α^2.
1
X
d^2 X
dx^2
+
2 mE
^2
−α^2 = 0
∂^2 X
dx^2
+
(
2 mE
^2
−α^2
)
X= 0
Or
∂^2 X
∂x^2
+β^2 X= 0
where
β^2 =
(
2 mE
^2
)
−α^2 (4)
X=Asinβx+Bcosβx
Take the origin at the corner
Boundary condition:X=0 whenx=0. This givesB=0.
X=Asinβx
Further,X=0 whenx=a
Sinβa= 0 →βa=nxπ
Or
β=
nxπ
a
(nx=integer) (5)