1000 Solved Problems in Modern Physics

(Grace) #1

188 3 Quantum Mechanics – II


Going back to (3)

1
Y

∂^2 Y

∂y^2

+

1

Z

∂^2 Z

∂z^2

=−α^2

1

Z

∂^2 Z

∂z^2

=−

1

Y

∂^2 Y

∂y^2

−α^2 (6)

Each side must be equal to a constant, say−γ^2 for the same argument as
before.


1

Y

∂^2 Y

∂y^2

−α^2 =−γ^2

Or


1

Y

∂^2 Y

∂y^2

+

(

α^2 −γ^2

)

= 0

Or
∂^2 Y
∂y^2

+μ^2 Y= 0

whereμ^2 =α^2 −γ^2 (7)
Y=Dsinμy
Y= 0 at y=b
This givesμ=

nyπ
b

(8)

Going back to (6)
(
1
Z

)

d^2 Z
dz^2

=−γ^2

This givesZ=Fsinγz
whereγ=

nzπ
c

(9)

∴ψ∼sin

(nxπx
a

)

sin

(nyπy
b

)

sin

(nzπz
c

)

(b) Combining (4), (5), (7), (8) and (9)

μ^2 =α^2 −γ^2 =(2mE/^2 )−β^2 −γ^2
Or
2 mE
^2

=μ^2 +β^2 +γ^2 =

(nyπ
b

) 2

+

(nxπ
a

) 2

+

(nzπ
c

) 2

Or

E=

(

h^2
8 m

)(

n^2 x
a^2

+

n^2 y
b^2

+

n^2 z
c^2

)

(10)

3.40 Fora=b=c
E=(h/ 8 ma^2 )


(

n^2 x+n^2 y+n^2 z

)

(Equation 10 of Prob 3.39)
Free download pdf