188 3 Quantum Mechanics – II
Going back to (3)
1
Y
∂^2 Y
∂y^2
+
1
Z
∂^2 Z
∂z^2
=−α^2
1
Z
∂^2 Z
∂z^2
=−
1
Y
∂^2 Y
∂y^2
−α^2 (6)
Each side must be equal to a constant, say−γ^2 for the same argument as
before.
−
1
Y
∂^2 Y
∂y^2
−α^2 =−γ^2
Or
−
1
Y
∂^2 Y
∂y^2
+
(
α^2 −γ^2
)
= 0
Or
∂^2 Y
∂y^2
+μ^2 Y= 0
whereμ^2 =α^2 −γ^2 (7)
Y=Dsinμy
Y= 0 at y=b
This givesμ=
nyπ
b
(8)
Going back to (6)
(
1
Z
)
d^2 Z
dz^2
=−γ^2
This givesZ=Fsinγz
whereγ=
nzπ
c
(9)
∴ψ∼sin
(nxπx
a
)
sin
(nyπy
b
)
sin
(nzπz
c
)
(b) Combining (4), (5), (7), (8) and (9)
μ^2 =α^2 −γ^2 =(2mE/^2 )−β^2 −γ^2
Or
2 mE
^2
=μ^2 +β^2 +γ^2 =
(nyπ
b
) 2
+
(nxπ
a
) 2
+
(nzπ
c
) 2
Or
E=
(
h^2
8 m
)(
n^2 x
a^2
+
n^2 y
b^2
+
n^2 z
c^2
)
(10)
3.40 Fora=b=c
E=(h/ 8 ma^2 )
(
n^2 x+n^2 y+n^2 z
)
(Equation 10 of Prob 3.39)