3.3 Solutions 191
Dividing (10) by (9) gives
ik(A−B)
A+B
=−α (11)
Diagrams forψat aroundx= 0
3.42k 1 =
(
2 mE
^2
) 1 / 2
;k 2 =
(
2 m(E−V 0 )
^2
) 1 / 2
(1)
Boundary condition atx=0:
ψ 1 (0)=ψ 2 (0)
dψ 1
dx
∣
∣
∣
∣
x= 0
=
dψ 2 (x)
dx
∣
∣
∣
∣
x= 0
(2)
These lead to
A 0 +A=B (3)
ik 1 (A 0 −A)=ik 2 B
Or
k 1 (A 0 −A)=k 2 B (4)
Solving (3) and (4)
A=
[
k 1 −k 2
k 1 +k 2
]
A 0 (5)
B=
2 k 1 A 0
k 1 +k 2
(6)
Reflection coefficient,
R=
|A|^2
|A 0 |^2
=
(k 1 −k 2 )^2
(k 1 +k 2 )^2
(7)
Transmission coefficient,
T=
(
k 2
k 1
)
|B|^2
|A|^2
=
4 k 1 k 2
(k 1 +k 2 )^2
(8)
Substituting the expressions fork 1 andk 2 from (1) and puttingE= 4 V 0 / 3
we find thatR= 1 /9 andT= 8 /9.
From (7) and (8) it is easily verified that
R+T=1(9)
Fig. 3.16Graphs for
probability density