4 1 Mathematical Physics
Γ(n)=
∫∞
0
e−xxn−^1 dx (Re n>0) (1.11)
Γ(n+1)=nΓ(n) (1.12)
Ifnis a positive integer
Γ(n+1)=n! (1.13)
Γ
(
1
2
)
=
√
π;Γ
(
3
2
)
=
√
π
2
;Γ
(
5
2
)
=
3
4
√
π (1.14)
Γ
(
n+
1
2
)
=
1. 3. 5 ...(2n−1)
√
π
2 n
(n= 1 , 2 , 3 ,...) (1.15)
Γ
(
−n+
1
2
)
=
(−1)n 2 n
√
π
1. 3. 5 ...(2n−1)
(n= 1 , 2 , 3 ,...) (1.16)
Γ(n+1)=n!∼=
√
2 πnnne−n (Stirling’s formula) (1.17)
n→∞
Beta functionB(m,n) is defined as
B(m,n)=
Γ(m)Γ(n)
Γ(m+n)
(1.18)
B(m,n)=B(n,m) (1.19)
B(m,n)= 2
∫π/ 2
0
sin^2 m−^1 θcos^2 n−^1 θdθ (1.20)
B(m,n)=
∫∞
0
tm−^1
(1+t)m+n
dt (1.21)
Special funtions, properties and differential equations
Hermite functions:
Differential equation:
y′′− 2 xy′+ 2 ny= 0 (1.22)
whenn= 0 , 1 , 2 ,...then we get Hermite’s polynomialsHn(x)ofdegreen,given
by
Hn(x)=(−1)nex
2 dn
dxn
(
e−x
2 )
(Rodrigue’s formula)