200 3 Quantum Mechanics – II
3.52u 0 =
[
√α
π
]
e−ξ
(^2) / 2
H 0 (ξ);ξ=αx
P= 1 −
∫a
−a
|u 0 |^2 dx= 1 − 2
∫a
0
(α/
√
π)e−ξ
(^2) / 2
dx
= 1 −
2
√
π
∫aα
0
e−ξ
2
dξ
E 0 =^1 / 2 ka^2 =
ω
2
(n=0)
Thereforea^2 =kω=
(
k
)(k
m
) 1 / 2
=√km =α^12
Thereforeα^2 a^2 =1orαa= 1
P= 1 −
2
√
π
∫ 1
0
e−ξ^2 dξ
= 1 −
2
√
π
[
1 −ξ^2 +
ξ^4
2!
−
ξ^6
3!
+
ξ^8
4!
]
dξ
= 1 −
2
√
π
[
1 −
1
3
+
1
10
−
1
42
+
1
216
...
]
≈ 0. 16
Therefore,p≈16%
Fig. 3.21Probability of the
particle found outside the
classical limits is shown
shaded
3.53The potential is of the formV(r)=−V 0 +γ
(^2) r (^2) (1)
Schrodinger’s radial equation is given by,
d^2 u
dr^2
=
[
l(l+1)
r^2
+
2 μ
^2 (V(r)−E)
]
u (2)
Upon substituting (1) in (2), we obtain
d^2 u
dr^2
+
[
2 μ
^2 (V 0 +E−γ^2 r^2 )
−
l(l+1)
r^2
]
u=0(3)
The quantityγ^2 can be expressed in terms of the classical oscillator fre-
quency
γ^2 =
μω^2
2
(4)
Forr→0, (3) may be approximated to
d^2 u
dr^2
−
l(l+1)u
r^2
= 0
The solution of which is,
u(r)=arl+^1 +
b
r
withaandbas constants.