3.3 Solutions 203
Similarly<Δpx>^2 =<p^2 >
(^1) /
2 mω
(^2) <x (^2) >·
(
1
2 m
)
<px>^2 ≤
1
4
(
ω
2
) 2
[
<x^2 ><px^2 >
] 1 / 2
≤
2
orΔx.Δpx≤ 2
Now compare this result with the uncertainty principle
Δx·Δpx≤
2
We conclude thatΔx.Δpx≥ 2. Obviously the zero point energy could not
have been lower than 2 ωwithout violating the uncertainty principle.
3.55 The probability distribution for the quantum mechanical simple harmonic
oscillator (S.H.O) is
P(x)=|ψn|^2 =
αexp(−ξ^2 )Hn^2 (ξ)
√
π 2 nn!
(1)
ξ=αx;α^4 =mk/^2
Stirling approximation gives
n!→(2nπ)^1 /^2 nne−n (2)
Furthermore the asymptotic expression for Hermite function is
Hn(ξ)(forn→∞)→ 2 n+^1
(n/ 2 e)
n 2
√
2 cosβ
exp(nβ^2 ) cos
[
(2n+^1 / 2 )β−
nπ
2
]
(3)
where sinβ=ξ/
√
2 n (4)
Using (2) and (3) in (1)
P(x)→ 2 αexp(−ξ^2 )exp(2nβ^2 )
cos^2
[(
2 n+^12
)
β−n 2 π
]
π
√
2 ncosβ
But<cos^2
[(
2 n+^12
)
β−n 2 π
]
>=^12
ThereforeP(x)=
αexp(−ξ^2 )exp(2nβ^2 )
π
√
2 ncosβ
(5)
Fig. 3.23Probability distribution of quantum mechanical oscillator and classical oscillator