204 3 Quantum Mechanics – II
Classically,E=ka
2
2 =
(
n+^12
)
ω(quantum mechanically)≈nω(n→∞)
Thereforea^2 =^2 nkω=
( 2 n
k
)(k
m
) 1 / 2
=√^2 kmn =^2 αn 2
ω=
√
k
m
or
a=
√
2 n
α
(6)
Sinβ=
ξ
√
2 n
=
αx
√
2 n
=
x
a
Therefore
cosβ=
(a^2 −x^2 )
(^12)
a
(7)
Using (6) and (7) in (5)
P(x)=
exp(−ξ^2 exp(2nβ^2 ))
π(a^2 −x^2 )^1 /^2
(8)
Now whenn→∞,sinβ→βand
β→ξ/
√
2 n,andexp(−ξ^2 )exp(2nβ^2 )→1)
ThereforeP(x)=π√a^12 −x 2 (classical)
3.56 One can expect the probability of finding the particle of massmat distancex
from the equilibrium position to be inversely proportional to the velocity
P(x)=
A
v
(1)
whereA=normalization constant. The equation for S.H.O. is
d^2 x
dt^2
+ω^2 x= 0
which has the solution
x=asinωt;(att= 0 ,x=0)
whereais the amplitude.
v=
dx
dt
=ω
√
a^2 −x^2 (2)
Using (2) in (1)
P(x)=A/ω
√
a^2 −x^2 (3)
We can find the normalization constant∫ A.
P(x)dx=
∫a
−a
Adx
ω
√
a^2 −x^2
=
Aπ
ω
= 1
Therefore,
A=
ω
π
(4)
Using (4) in (3), the normalized distribution is