3.3 Solutions 205
P(x)=
1
π
√
a^2 −x^2
(5)
3.57 Schrodinger’s equation in one dimension is
(
−
^2
2 m
)
d^2 ψ
dx^2
+V(x)ψ=Eψ (1)
Given
ψ=exp(−
1
2
ax^2 )(2)
Differentiating twice,
we get
d^2 ψ
dx^2
exp(−
1
2
ax^2 )(a^2 x^2 −a)(3)
Inserting (2) and (3) in (1), we get
V(x)=E+
(
^2
2 m
)
(a^2 x^2 −a)(4)
Minimum value ofV(x) is determined from
dV
dx
=
^2 a^2 x
m
= 0
Minimum ofV(x) occurs atx= 0
From (4) we find 0=E−
(^2) a
2 m
(a) Or the eigen valueE=
(^2) a
2 m
(b)V(x)=
(^2) a
2 m+
(
^2
2 m
)
(a^2 x^2 −a)=
(^2) a (^2) x 2
2 m
3.58
n=
En
2
<
P^2
2 m
>n=<H>n−<V>n=^1 / 2 En
<P^2 >n=mEn
Also<x>n=0;<P>n= 0
<(Δx)^2 >=<x^2 >n−<x^2 >n
<
(
ΔP^2
)
>=<P^2 >n−<Pn>^2 =<P^2 >n=mEn
But<x^2 >n=
∫∞
−∞u
∗
n(x)x
(^2) un(x)dx;ξ=αx